

Using and programming the
Epson HX-20
portable computer

Using and programming
the Epson HX-20
portable computer

Eric Balkan

o

Van Nostrand Reinhold (UK) Co. Ltd

© 1985 E. Balkan

All rights reserved. No part of this work covered by
the copyright hereon may be reproduced or used in
any form or by any means — graphic, electronic, or
mechanical, including photocopying, recording,
taping, or information storage or retrieval systems —
without the written permission of the publishers.

First published in 1985 by
Van Nostrand Reinhold (UK) Co. Ltd
Molly Millars Lane, Wokingham, Berkshire, England

Typeset in 10 on 11pt Palatino by
Columns Ltd, Reading

Library of Congress Cataloging in Publication Data

Balkan, Eric.
Using and programming the Epson HX-20 portable computer.

Includes index.
1. Epson HX-20 (Computer) 1. Title.
QA76.8.E57B35 1985 001.64 85-3274

ISBN-13: 978-0-442-30650-2 e-ISBN-13: 978-94-009-4862-4
DOI: 10.1007/978-94-009-4862-4

CONTENTS

Preface vii
Acknowledgements viii
Introduction 1

What this book covers; some applications of portable computers

1. Which computer? 5
Developing a selection methodology; computers v. terminals; portables v. hand-helds v.
transportables v. plug-ins; the ideal portable; what to look for in a portable; summary —
20 portables on the market

2. The HX-20 43
Introduction to the HX-20; the hardware components: processor, memory, display,
keyboard, printer, real-time clock, tone generator, power supply, bar code interface, RS-
232 port, high-speed serial port, microcassette drive, cassette interface, PROM cartridge
interface, floppy disk interface, TV interface, expansion unit; environmental considerations;
documentation and technical support; warranty; prices

3. HX-20 BASIC 57
Why and how to learn BASIC; what you get in HX-20 BASIC: commands, variables,
functions, statements, operators, special characters; what HX-20 BASIC is missing

4. Using and writing BASIC programs 64
Finding and entering BASIC programs; tips on converting programs written for other
machines; programming tips; some BASIC programs and subroutines: searches, sorts,
graphics, finance, electronics

5. The 6301 microprocessor 81
Basic concepts; introduction to machine architecture; programming the 6301, registers, the
stack, addressing modes, instructions; interrupts, the real-time clock

6. Assembly language 102
Why use machinelassembly language? an assembler; other assemblers; storing machine
code into memory; using the Monitor as a learning tool; assembly language coding hints;
sample program

7. Forth 117
An introduction to the language; description of HCCS Forth

8. Communications 120
The why of data communications: an overview, data transfer, electronic mail, information
retrieval & transactional services; the how of data communications: modems, RS-232,
communicating from BASIC, a ‘smart’ communications program, other communications
programs, trouble-shooting tips

9. Word processing 138
Word processing on the HX-20; Ffosswriter; SkiWriter; Intext; other WP/Editing
programs

vi CONTENTS

10. Inventory/stock tracking

What to look for in an inventory system; available inventory software; bar code readers and
software; technical information on bar codes; bar code printing program

11. Software and systems
Packaged software and systems from the US, UK and Australia

12. Peripherals
Different peripherals available: what they do, how they connect, where to get them

13. Operating tips

Appendix A: Vendor List
Where to go to buy software, hardware, supplies

Appendix B: Where to go for more information
Magazines, newsletters, users’ groups

Appendix C: Portable Computer Manufacturers
Appendix D: System Reference

Appendix E: Computer Terminology
Glossary of the familiar but different, as well as the totally unfamiliar

Index

143

155

171

178
181

189

191
193
200

215

PREFACE

Why this book? Other than the fact that I like writing about computers more
than just about anything else, this book fills several real needs. No matter how
many manuals a computer manufacturer puts out to accompany a system —
and some of Epson America’s are very good — not everything can be covered.
This book fills in the gaps.

This book is unbiased, having been written independently of Epson. So, I
won'’t be telling you to drop everything and run out to buy an HX-20. The HX-
20 is good for some uses, not so good for some others. This book is a guide to
getting the most out of the machine and/or pointing you towards a different
machine that might better suit your needs.

At the start of this project I had to decide who was my target audience:
novices, experts, or those in between? Because HX-20 owners and prospective
owners don’t fall into neat categories, I tried to ‘cover all the bases’. Or at least
as many as possible. As with any attempt to do everything, I didn’t always
succeed. But I did succeed in providing at least something for everyone.

For those who haven’t yet bought a portable — or are unsure if buying an
HX-20 was the right move — there are descriptions of 20 other portables on the
market.

For those who have used other computers before, there’s information on
how Epson BASIC differs from other BASICs, with tips on converting
programs.

For those who want to learn how to control the HX-20 on a machine code
level, there’s information on a relatively easy way to learn assembly language
— and an assembler to practise with.

For those who have never used another computer before, I've provided
explanations of basic computer concepts, including an extensive glossary.

For everyone, there are descriptions — and vendor addresses — of many
software packages and hardware add-ons available for the HX-20.

I plan to continue to play around with the HX-20 and will probably turn up
additional information that HX-20 owners may find useful and which I'll be
glad to share. You can contact me at PO Box 30214, Bethesda, MD 20814, USA.
Comments, suggestions, and questions are welcomed. (Please include a self-
addressed, stamped envelope if you want a reply. Overseas readers, please
include US$1 or approximate in local currency.)

vii

ACKNOWLEDGEMENTS

I'd like to thank Mark Weber who contributed several programs to the book, Terry
Ronson of the HX-20 Users’ Group who very kindly allowed me to reprint material from
his newsletters, and Paul Heckel of Quickviews Systems who provided useful contacts
at Epson America.

My thanks also to the software publishers who sent us copies of their programs for
review: Talbot Computers Ltd, King Software, HCCS, Software Riches. And to those
other publishers who sent me complete manuals on their products: Ffoss Ltd, Kuma
Computers, Longdin & Browning, Transam Microsystems. And BiTech Enterprises who
loaned me a bar code reader. Thanks to Naomi Sigler of The Bohle Company, Epson
America’s public relations firm, for her assistance with the project, including the loan of
an HX-20. Thanks also to Bob Diaz and Ed Urbina of Epson America for being available
for technical assistance.

Others deserving of mention: Robert Labenski, Sandra Thorogood of Thomas Nelson
Australia, Eric Maloney of 80 Micro for allowing me to reprint a bar code article, Davey
S. Thornton for writing the article, Hitachi America for allowing me free use of their
data book, Ian J. Phipps of Epson (UK) Ltd, and my wife, Freda, for putting up with me
while I was working on the book.

And Michael Balkan, age 4, for stress testing the machine.

Eric Balkan

viii

TRADEMARK
ACKNOWLEDGEMENTS

The italicized names are trademarks of the following companies:

Apple, Lisa Apple Computer Inc.

CP/M, CP/M-80, CP/M-86, CP/M-68K Digital Research Inc.
MS-DOS Microsoft Inc.

VisiCalc VisiCorp

Wordstar MicroPro International

MicroOffice 100 MicroOffice Systems Technology
Roadrunner MicroOffice Systems Technology
Prestel British Telecommunications

The Source Source Telecomputing

IBM PC International Business Machines
Workslate Convergent Technologies

Z-80 Zilog Corp.

Supercalc Sorcim Corp.

SkiWriter SkiSoft Inc.

Osborne 1 Osborne Corp.

TRS-80 Tandy Radio Shack

Sony Sony

Wafertape Texas Instruments

Learning Lab Kriya Systems

Some of the material in this book has been reprinted with the permission of:

— Epson Corporation, Japan, from the HX-20 Technical Reference Manual, copyright 1983
— Hitachi America, from the Microcomputer Data Book

~ 80 Micro, from the November 1983 issues of 80 Micro, copyright 1983.

INTRODUCTION

This chapter covers:

An overview of this book
Some applications of portable computers

When science-fiction writers of the 1950s looked
into the future, they saw computers as large as
entire city blocks. These massive banks of
flashing lights were to be cared for by an army
of white-coated technicians. Perhaps, on
occasion, an ordinary citizen would be gifted
with a few nanoseconds of the computer’s time.

Well, we know the future didn't work out
quite like that. To the surprise of many, the
second generation of computers was smaller
than the first. And the trend has continued.
Maybe we’ll all end up with wrist-watch-size
computers that we can talk to and that, in turn,
can talk via airwaves to all other computers.
Maybe we’ll all end up with. . .

But, in the meantime, there are desktop
computers, briefcase computers, ‘lap’ com-
puters, and hand-held computers. This book is
both a guide through the computer world and a
guide to a specific computer, the Epson HX-20,
and its future progeny.

This book starts at the beginning: picking a
computer. It does not necessarily recommend an
Epson computer. Rather we suggest that you
look over what you need a computer for and
compare your needs against what’s on the
market. We describe things to look for in a
computer system. We also describe some 20
portable and not-so-portable computers that
might meet your needs.

We don’t expect too many of our readers to
become programmers, but knowing even a little
BASIC can help out quite a bit when running
someone else’s program. Or even getting a
program written for another computer to work
on the HX-20. So, there are two chapters on

BASIC. The first describes HX-20 BASIC and
how it differs from other BASICs. The second
gets into conversion techniques, programming
tips, sample programs, and so on. Both chapters
were written with the idea that we would add to
Epson’s own manuals, rather than duplicate
their contents.

To understand the HX-20, or any computer
for that matter, requires a knowledge of the
microprocessor and some feel for what machine
code is all about. So we’ll spend some time on
that.

The book also goes into some typical ways to
use the HX-20 or any other portable: communi-
cations, word processing, inventory.

Many software packages that are available for
the HX-20 are described in this book. These
include programs for business, entertainment,
engineering; systems for pharmacists, sur-
veyors, the handicapped, etc.

You can read the book sequentially or just
pick out the chapters that most interest you. If
you come across terms or concepts that are
unfamiliar, check the glossary. Or, backtrack to
earlier chapters that offer more explanations.

Whether or not the HX-20 becomes popular,
portable computers are here to stay. They bring
the power of the computer to you, wherever you
might be, rather than force you to go wherever
the computer is.

SOME APPLICATIONS

What can you do with a portable computer?

2 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Well, some people who might make use of its

capabilities are:

— pilots (compute flight plans)

— engineers (calculations)

- salespeople (order entry)

- students (class/library note-taking)

- reporters/writers (when away from their
VDT/typewriter)

— insurance agents (for presentations)

- financial analysts (calculations)

— investors (on vacation, at the broker’s)

- consultants (time reporting/billing)

- lawyers (courtroom notes)

— executives (scheduling)

— pharmacists (drug label preparation)

- handicapped (voice synthesis, motor aid)

— truckers (accounting)

The list can go on and on. We talked to some of
the people that were using portables, and the
HX-20 in particular, and would like to pass on
the experiences of two of them.

Brad Knapp works for the USDA at a
Montana livestock and range research station.
He’s been using an HX-20 for six to seven
months to collect data on animal weights.
Connected to electric scales, the HX-20 records
the data on tape and provides a printout on site.
But while Knapp uses the HX-20, he refrains
from endorsing it. His biggest complaint:
the ‘Charge Battery’ message coming up in the
middle of doing something. The HX-20, he feels,
would have been a better design if it could
switch to AC power and/or if the batteries could
be changed in the field.

Dan Holoien works for the American Crystal
Sugar Research Center. He collects agricultural
data for later editing and transmission to an-
other computer site. Like many HX-20 owners,
he was attracted by the internal printer and the
quality of the keyboard. A Forth user, Holoien
also sees the HX-20 as a good Forth teaching
tool. He also sees possibilities for the high-speed
serial port.

A lot of what the HX-20 can do remains as
possibilities. Since portable computer use is not
widespread, it takes a certain amount of investi-
gation and experimentation to learn the best
ways to use the machine. Magazines like Portable
Computing often run articles on how people use
their portables. We’'ll give some suggestions
here too.

Students

Portable computers have been suggested as ideal

for students who have to take notes in class or
while doing library research. Well, ‘ideal’ is not
quite correct. There are advantages and dis-
advantages.

A good typist can type faster than he/she can
write. And there’s no writer’s cramp. Notes that
are in machine readable form have the addi-
tional advantage of being able to undergo
further processing. Notes can be re-organized,
formatted, printed on an external printer. This
makes later study easier, for individual study as
well as group study. Coupled with the search
feature of a word processor, specific references
can be found that might otherwise be hard to
locate.

We mentioned disadvantages above. Here’s
the biggest: no capacity to include diagrams.
Some subjects: chemistry, biology, geology,
make heavy use of diagrams. No maths for-
mulas either. Conceivably, the student can do
the diagrams or formulas on paper and some-
how reference these diagrams back to the taped
notes — but this seems clumsy to us. Experi-
mentation is in order. Perhaps, with the right
software, the HX-20's graphics capability can
overcome this problem.

Another disadvantage: it's conceivable to lose
an entire session’s notes because, for some
reason, the tape can’t be read back in. Another
subject for nightmares: in the middle of note-
taking, the machine hangs, a cold start must be
done, and previously entered text is lost. Well,
fortunately, this kind of thing doesn’t happen
too often. But its possibility should be kept in
the back of the mind. Perhaps an audio tape
recorder should be used as a back-up. You don’t
want to use an audio recorder as a primary note-
taker, because you probably won’t have the time
to listen to all the class sessions over again. But
it can be used as a just-in-case device.

Pre-School children

Children are taking to computers at a rate that
astounds many older people. But it's actually
been known for quite a while that children love
IBM Selectric typewriters. They like keyboards.
They like the direct cause-and-effect relationship
of hitting a key and seeing a letter appear.
Portable computers like the HX-20 are small.
Coupled with appropriate software — and this
includes easy-to-use word processing programs
like SkiWriter — an HX-20 can become a very
practical alternative to the usual video computer
system. Built-in printer, no cables, rugged con-

INTRODUCTION 3

Fig. 0.1 Pre-school use

struction, no tying up of the family TV set
— what do you think?

Lawyers

When the Osborne I came out, numerous
lawyers saw it as something that could be taken
into the courtroom. But the Osborne I and
similar transportable computers are really quite
bulky to carry around in this fashion. True
portables like the HX-20 should do better in this
environment.

Do portables have a place in the law library?
Perhaps with the proper software. With an IBM
3101 terminal emulation program, they might
even be able to be used as LEXIS terminals.

Travellers

As we go to press, neither the Federal Com-
munication Commission nor the Federal Avi-

ation Administration has ruled on whether or
not portables can be used on board aircraft. We
know for certain that the Osborne I computer
causes radio frequency interference (RFI) that
interferes with flight instruments, but we can
deduce that this stems from the Osborne’s disk
drives and CRT display. Without disks, without
a CRT, portables should produce much less RFI.
But if you intend using a portable while flying,
you'd best check with the airline.

That still leaves shipboard, train, and car use.
A battery-powered computer has a distinct
advantage over its line-powered brethren here.

This has been just a smattering of sug-
gestions. If you read the book, and particularly if
you look at Chapter 11, Software and Systems,
where many available programs are described,
you'll likely uncover some way that a portable
computer can help you in your business or
profession.

WHICH
COMPUTER?

This chapter covers:

‘To err is human, but to really foul things up requires a computer.’

Developing a selection methodology

Computers v. terminals

Portables v. hand-held v. transportables v. plug-ins

The ideal portable
What to look for in a portable
Portables on the market

Radio Shack, NEC, Casio, Teleram, GRiD, Husky, Datec,
Convergent Technologies, Xerox, Gavilan, MicroOffice, Sharp,
UDI, Hewlett-Packard, Texas Instruments, MSI, Panasonic,

Toshiba, Sony, Microwriter

DEVELOPING A SELECTION METHODOLOGY

Creating a formal plan before making a com-
puter purchase can save a lot of time in the long
run. The cost of a computer may or may not put
a big dent in your budget. But buying a
computer is similar to getting married. You'll be
spending a lot of time living with your choice, so
it's wise carefully to consider your options
before plunging.

The first step must be to analyse your
business or profession. Rather than go by
intuition, try to verbalize what it is you do. Then
analyse your needs. Decide what is a require-
ment and what is a nicety. Put this in writing so
that you'll have it later to refer to. Putting things
into actual words, by the way, is a good method
for focusing thinking. Now, check out the
market. Just look around and see what's avail-
able. Then go back and adjust your expectations
and your list of requirements.

Once you've decided that there are things on
the market that can help your business, then
you can more seriously check out specific
products. Of "course, if it looks like current
technology is pretty far away from your business
needs, save your search for a later date.

Narrow down the list of possible products/
vendors. Call dealers and ask to have demon-
strations of their equipment. Rather than just
walking in off the street, call the dealer in
advance and tell him what you're looking for so
that he has time to set up something just for
you.

When you’ve narrowed down your search to
two or three models, check customer references.
Make sure that there are real people out there
who have bought the same products you're
planning to buy, from the same dealer you're
planning to deal with. And that they’re happy
with their choice.

This whole process is iterative. You may think
you've got your selection nailed down, then
suddenly discover from talking to a user that
your prospective purchase is missing some
important element. This takes you back to the
beginning again.

When you do make your selection, and it's
from a dealer you haven’t dealt with before, be
sure to have everything in writing, including all
salesmen’s promises. Not so much because
you'll really want to return the machine later on,
but to see how much of the salesman’s pitch the
vendor is really willing to stand behind.

6 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

COMPUTERS v. TERMINALS

Up until the late 1970s, if you used a computer
you probably did so by connecting to it via a
remote terminal. This terminal provided a key-
board for you to enter something into the
computer and some way — display screen or
‘hard-copy’ printout — for you to see the
results. Sometimes the connection to the com-
puter was over a telephone line and sometimes
via a direct wire.

Terminals have not become obsolete with the
advent of the personal computer. In fact, ter-
minal sales are up because many businesses are
using terminals to connect to multi-user micro-
computers, as well as minicomputers and main-
frames. Terminals have improved, too. The
simple ‘dumb’ terminal has grown up and can
now edit data, store it in memory, and display it
with a variety of options, even colour.

The examination of your business/personal
needs may not rule out the use of a terminal
instead of a computer. If your primary need, for
instance, is to read data stored on a computer
system — stock quotes or bibliographic refer-
ences, perhaps — then a terminal may do the
job. Even if you need to save the data for later
printout, a terminal with memory such as the
double memory units from Teleram can do it.

But if you need to process the data in some
fashion, then you'll probably need a computer.
While today’s terminals have microprocessors
inside them, this processor has been pro-
grammed to do only one thing — act in the way
the manufacturer wants it to. If you as a user
want to manipulate the data in some other way,
then you need a computer.

PORTABLES v. HAND-HELDS v. TRANS-
PORTABLES v. PLUG-INS

Computers can be divided into several classes.
Besides the desktop models that we’ve all
seen — Apple II, IBM PC, etc. — there are
several types that can be called portable, or at
least transportable, in one sense or another.
Hand-held is the name originally given to
those computers that were intended to be used
while being held in the palm of the hand. They
look and operate as calculators which have been
expanded with an alphabetic button-type key-
board, a couple of thousand characters of user
memory, and the BASIC programming
language. Relatively few people have found this

type of computer meets their needs, but they’re
worth checking into if you're a heavy calculator
user.

Transportable is the name often given to
desktop computers that can easily be trans-
ported from place to place. These include the
best-selling Osborne I and Compaq computers.
Often, some design compromise is made
between functionality and bulkiness. But,
generally, these computers can do nearly every-
thing that ordinary desktop computers can do.

If you don’t need true portability, if all of your
computing is done in an office, then look into
transportables. Comparing transportables to
desktop computers, transportables are a better
bet even if you expect to use your computer in
one place, as there will undoubtedly be times
when you’ll want to use it elsewhere. Compar-
ing transportables to portables, the size and
weight of the transportable makes it something
you don’t want to carry around as often as you
would a true portable.

Plug-ins is the name we’ve given to com-
puters about the size of portables, but which
require a hook-up to an external display screen.
A model like the Victor/ACT Apricot, for
instance, could be tucked under one arm and
transported from place to place. When you
arrive at your destination, you just plug it into a
power source and a display. Most office loca-
tions may not fill the bill, but hotel/motel rooms
will. So work can be done in the ordinary
fashion during the day, with computer use
reserved for when you get back to your room.
Of course, if you split your computing entirely
between two locations, the most convenient
thing to do is buy two compatible computers.

WHY A PORTABLE?

The truly portable computer has advantages
over its other computer relatives, among them:
size, weight, and freedom (if only temporary)
from a power cord. As we noted earlier, it's
important to examine your needs so that you'll
know what'’s really important for you.

THE IDEAL PORTABLE

In the mind of every portable computer designer
and probably every portable computer user,
there exists the ‘perfect portable’. This machine
will do everything for everybody. It will include:

WHICH COMPUTER? 7

— high-speed 8- and 16-bit processors compatible
with software for all of the other machines on
the market;

— sufficient memory (about 500,000 characters) to
run any program on the market;

- sufficient secondary storage (built-in) to allow
an entire 5-10 million character database to be
carried around;

— easy-to-read full-page display, with graphics,
on a flat screen that flips out of the way when
not in use;

— full-travel keyboard with special user-friendly
keys for any conceivable operation;

— input devices (e.g., voice recognition, touch-
screen) that allow the user to bypass the
keyboard for many functions;

— built-in, fast, letter-quality printer
graphics capability;

— full communications capabilities to allow for
high-speed data transfer, as well as the ability
to emulate any type of terminal in common
use;

— power supply that lasts for as long as you
need it to, which will be possible because none
of the above components will use any power
worth mentioning. Of course, the inevitable
recharging process will take no more than a
few seconds;

— the size of the entire package will allow it to be
carried around (pocket-sized?); weight will be
unnoticeable even after you've carried it
around all day;

— standard software will include all of the usual
functions that everyone needs, in an easy-to-
use, easy-to-learn format, completely inte-
grated with one another, as well as the ability
to perform more than one task at a time;

— Price? Under $1000 for outright purchase, with
rentals available.

with

Back in the real world, we’re not going to see
this machine very soon. But then, we don’t
really need to. What we really needs is some-
thing that fits our own personal requirements. If
you want a portable note-taker, for instance, you
don’t need a lot of secondary storage. If you
want to retrieve stored data, you don’t need a
full-page display. That’s why we can’t overstress
how important it is to:

- outline your needs based on what you are
going to be doing with the machine;

— develop a checklist of ‘must-have’ features —
hardware and software, both;

— develop a checklist of features in the ‘nice to
have but not strictly necessary’ category.

Some further advice:

—don’t buy features you don’t need or are
unlikely to use;

— if features that are indispensable to you are not
present, it may pay to wait for new models
rather than buy.

Hardware and software can’t be separated.
Unless you intend to write your own programs,
the software that is commercially available will
determine your use of the machine. For in-
stance, even though a particular machine may
seem like an ideal choice for text editing, it'll be
useless unless somebody writes a text editor for it.

Often, software can overcome hardware
deficiencies. A text compression/expansion
routine, for instance, can make up for having a
small display screen.

WHAT TO LOOK FOR IN A PORTABLE

Size and weight

You're buying a portable because you can carry
it around, so size naturally becomes a major
criterion. If you could fit the computer into
something that you always have with you, like a
pocket, that would be ideal. But then you can’t
get a full keyboard into a pocket device. The
next best thing is to look for a computer that can
fit into a case which you frequently carry or
wouldn’t mind carrying.

The way to find out if you really won't mind
carrying a particular computer around is to
locate something of the same size and weight.
Try carrying it around just as you would the
computer. Try typing on it, try supporting it in
your lap, etc.

What we said for size goes for weight as well.
Many Osborne owners have unwittingly found
themselves into some heavy computing. Again,
locate a dummy object with the same approxi-
mate weight and see if it can be manageably
carried for the time and distance that you would
be carrying your portable.

Size of the display

If there’s anything that grabs the attention when
comparing one portable to another, it’s the size
of the display. And it can make a big difference.
We’ve found a small display, for instance, to be
really unsuitable for entering/editing text — we
wanted to see the previous paragraph but
couldn’t.

8 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Vendors will tell you that you'll get used to
the small screen, but then, vendors will tell you
anything. The truth is that if you are used to
using a standard size screen, you will probably
never get comfortable performing the same
functions on a 4 line by 20 column display. But
then, you may not intend performing the same
functions on your portable as you would on a
desktop computer. All the more reason for you
to build your own checklist.

What actually will you be doing with the
portable? If you intend doing a lot of data retrieval
from remote mainframe computers — using the
Dow Jones News Service, for instance — it pays
to get a portable with a screen the same width as
the data you will be receiving. If you don't,
you're left with two options: having the data
wrap around to a second line which can make it
hard to read. (Tabular data is particularly
difficult to read that way.) Or, if the portable has
virtual screen capability, you can horizontally
scroll to read the data. More on horizontal
scrolling — which we’re not fond of — later.

Doing program development? If you can't fit a
line of code onto a line of the display, you'll
have trouble following the program logic. If you
can’'t fit a line of code onto the screen at
all — BASIC statements can be up to 255 charac-
ters — you're really in for it. But if you intend
doing your development on another machine,
then this is not a big consideration.

Want to do spreadsheets? The smaller the
screen the harder it's going to be to grasp the
inter-relationship of the data.

Doing inventory tracking? The screen size
probably won’t matter. Ditto for any application
that uses the portable as a sophisticated replace-
ment for a calculator.

Readability of the display

This is often a subjective judgement. But there
are definite criteria to rate a display on. Of
course, if you’re using your portable in an
application that doesn’t require looking at the
display very often, you can skip to the next
heading.

An electro-luminescent (EL) display, such as
on the GRiD Compass, is probably the clearest
one that can be produced by present technology.
After that comes CRTs, green or amber long-
persistence phosphor preferably. A black/white
CRT produces a persistent flicker that you may
not notice consciously, but which will tire your
eyes with prolonged use.

A liquid crystal display (LCD) such as found
on digital watches is the least desirable type of
display from a readability standpoint, but is the
lightest weight, the cheapest, and uses the least
power. Those qualities make it practically ubi-
quitous on the current generation of portables.
Other displays that you may see in the future
but which are not now economically or tech-
nically feasible are —

plasma — too expensive

EPID (electrophoretic imaging displays) — still
under development

flat CRTs — still under development

vacuum fluorescence — presently seen on some
consumer products, but so far only suitable for
very small displays.

An LCD screen is best seen looked at straight
on. If viewed at an angle, the characters will be
harder to read; if viewed at a sharp angle, they
may be completely invisible. You may find that
the position in which you’d like to place your
portable does not let you see the display clearly.
You may also find, unless you're using the
portable like a desktop computer, that you're
forced to sit in a fixed position. Or that you're
constantly re-adjusting the position of your
portable to bring the display back into focus. In
both these cases, it would help to have a control
that tilts the LCD, such as on the Teleram, and
thus makes the characters more readable.

Typically, characters on an LCD screen are
made from a matrix of 5 horizontal dots by 7
vertical dots, with an additional dot horizontally
and vertically for separating the characters. This
compares poorly to the usual 7 X 9 display
found on CRTs. (Some CRTs, such as on the
Corona PC, may go up to 16 X 13 dots.) Of
course, people have used Radio Shack TRS-80
Model IIIl computers for years (including your
author) and these have only a 5 X 8 matrix. But
the more dots the easier the display is to read
and therefore the less tiring it is to read it. While
on the subject of dots, note that some of the
lower case letters on this printed page descend
below the line. A 7 X 9 CRT display reserves 2
dots for these descenders. Most 5 x 7 LCD
screens don’t have any dots available for descen-
ders. Without descenders, the display takes a
little longer to read. Some models, like the Radio
Shack 100, provide 1-dot descenders, but these
share the same dot-line as the cursor. That may
not be an advantage.

Yet another drawback of LCDs is their
inability to be read in very dim light. If you own

WHICH COMPUTER? 9

a digital watch, you know that there are some
‘times you want to look at it but there isn't
enough light to do so. The same thing applies to
portables. If you think a power failure will let
you continue computing on your Dbattery-
powered portable, think again, you’ll need one
hand to hold the flashlight. A backlit display
would be very valuable, but as far as we know,
only the Datec portable has it.

If you plan on using your portable in a fixed
location very often, consider getting one with a
monitor (CRT) or TV attachment. This provides
a way for portables with very small screens to
display a more reasonable number of characters.
If you go back to the same place constantly, just
leave your monitor there. If you move around
very much, a TV attachment is useful because
there are many more TVs around than moni-
tors — such as in motel rooms.

Keyboard type

Desktop computers almost always have the
same basic type of keyboard. The feel may vary
from one to another, which is something to
consider, but you don’t see the great variety of
keyboard types that you do with portables. So, if
you've bought a computer before you may not
have paid much attention to this facet of the
system. But check it out before you buy your
portable.

If you plan to do any kind of text processing,
you'll want full-travel, full-size keys. It's just
extremely difficult to type rapidly on any other
kind of keyboard. If what you will do is mostly
calculations, then a button-type, limited-travel
keyboard may be OK.

If you plan to work in ‘hostile’” environments,
you'll want a sealed keyboard to keep out dust,
liquids, etc. Generally, this means a flat, touch-
sensitive, ‘membrane’ keyboard such as you
may have seen on the Atari 400 game computer.
A membrane keyboard is best equipped with
some sort of feedback — a tone or click — so
that you will know that a key has been
depressed — since you won’t be able to feel the
depression. At least one company is working on
a full-travel membrane keyboard, but that type
has not yet shown up in any commercial
products.

Keyboard layout and key assignments

Most portables have their keys laid out in
QWERTY fashion — the standard typewriter

arrangement. But after that, there are no
standards.

Do you need keys for specific functions? Do
you want to be able to assign keys to your own
functions? ‘Soft’ keys are user-definable.
Usually, a computer will have one or more of
these soft, program function (PF) keys. Some
portables will have an entirely soft keyboard,
allowing the sophisticated user to re-assign any
key. (Among desktops, the IBM PC and TRS-80
Model I/III have soft keyboards.) This is parti-
cularly valuable where the portable is used for a
single purpose, rather than as a general purpose
computer. Single keys can be assigned to
character sequences, for instance, that would
otherwise require lengthy operator typing.

Do you need a numeric keypad? On some
portables, the right-hand side of the keyboard
contains an integral keypad. Typically, there will
be a NUM key or equivalent that changes these
keys to numbers only. This is OK but takes
getting used to if you're familiar with a standard
numeric, calculator-type keypad. The difference
comes because these keys are on staggered
rows, while a calculator keypad has its keys on
aligned rows.

Do you want to be able to enter graphics
characters directly from the keyboard? On some
portables you can, others require that graphics
be created only from within a program.

Graphics

Most computers provide two ways to put
pictures on the screen: character graphics and
dot graphics. Character graphics is simply the
assignment of a picture to a particular code.
When this code is generated — either by the
keyboard or by a program — this graphics
character appears on the screen.

The character that’s drawn takes up as much
space as an ordinary letter or number would. In
most computers, these characters are pre-
defined. There may be an assortment of vertical
and horizontal lines, boxes, Greek letters, etc.
Some computers, like the HX-20, allow the user
to create his own graphics characters within the
allowable dot matrix of a character space.

A more powerful means of generating pic-
tures is by programming each dot on the screen.
By turning each dot on or off, any size and type
of graphics may be drawn. The more dots on the
screen a computer has, the greater the resolu-
tion. Diagonal and curved lines look less jagged,
for instance, at higher resolution. For many

10 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

computers, this dot graphics facility is built right
into BASIC and is easy to experiment with.

Of course, if the entire screen is only one or
two lines high, then screen graphics don’t mean
much. But you may be able to use the built-in
graphics capability to draw directly on an
attached printer, or possibly insert character
graphics into a text file for later output on a
printer.

Processor

The brain inside any computer system is the
processor. The micro revolution, in fact, was
begun when a processor was put on a single
silicon chip. Since that time many different
microprocessors have been developed. Today,
the differences among these microprocessors
creates a basic incompatibility among software
for different computers. (More on software
compatibility later.)

There are several processors that can show up
in portable computers. First, there are the
NMOS processors which have been used in
desktop computers for several years. These are
fast, but use quite a lot of power. Some
portables were designed to use these processors,
e.g., the Z-80 and the 8086, but these machines
cannot live for long away from a power cord.

Most processors found in portables are CMOS
versions of NMOS processors. The 6301 is a
CMOS version of the 6801, the NSC800 is a
CMOS version of the Z80, the 80C85 is a CMOS
version of the 8085. While slower than their
NMOS equivalents, CMOS chips use far less
power, which makes them more suitable for
portables.

The criteria for deciding among the various
CMOS processors is: what software can they
run, how much memory can they support, and
how fast are they. All of these topics are
discussed in separate sections in this chapter. At
this time, suffice it to say that the 8080, 8085,
and the Z80 are part of a processor family that
can run the CP/M operating system with all of
the business applications developed under it.
(Assuming that sufficient memory, etc., is avail-
able.) The MS-DOS operating system used by
the IBM PC can be run on the 8088/8086 family,
assuming that other requirements are met. The
6800/6301/6303 family, on the other hand, is
backed up by little software.

RAM

The letters in RAM stand for random access

memory, but all computer memory today is
organized so that any location can be accessed at
any time. What RAM really is, then, is read-
write memory. Unlike ROM (read-only
memory), the user can store data and pro-
gramme in RAM. It doesn’t take any leap of
faith, therefore, to see that the more RAM you
have the better off you'll be.

Portables tend to have less RAM than desk-
tops because semiconductor RAM chips only
hold their contents as long as power is applied
— and power has to be allocated very carefully
in a battery-operated unit.

Many people who run spreadsheets and do
word processing on 48K (48,000 character) RAM
desktop computers find that they run out of
space eventually. So, you'll likely run out of
space that much sooner on your 16K portable.
Also, you may want to have more than one
program in memory at the same time — another
reason for looking for as much RAM as you can
get.

One solution, found on the NEC PC-1801 and
a few others, is RAM cartridges. These are
independently-powered plug-in modules that
expand the capability of the portable without
draining the battery. They're also used as
secondary storage. That is, you can take them
out, put them in your pocket, plug a blank one
in — and be able to plug the first one back in
later on without losing any of its contents. That
works especially well for the situation where
you're working on something, want to stop to
work on something else, and then go back to
working on the first task. It also works well with
large databases where speed is important (and
tape is too slow) but where the entire database
can’t fit into memory at one time.

Read-only memory

Many manufacturers stress the amount of read-
only memory their systems contain. But this is
really inconsequential. By and large most users
will not be putting their own programs in this
ROM space. So, the ROM is really for vendors.
And what programs go into this ROM is much
more important than how big it is.

The only advantage in having a lot of ROM
space available is that it saves time loading from
cassette or across a communications line, which
is a worthwhile advantage, by the way. But
often this comes at the cost of reducing the
amount of RAM available, usually a much more
important consideration for the user. The reason

WHICH COMPUTER? 1

this happens is that even though the contents of
ROM are burned in, it still requires power to
access it.

Another reason: without sophisticated
memory management, an 8-bit microprocessor
like the Z80 can’t access more than 64K of
memory (RAM + ROM). A new version of the
CP/M-80 operating system, CP/M Plus, does
this, but CP/M Plus hasn’t turned up on
portables yet. Some 8-bit processors like the 6301
may do some memory management of ROM,
but what they do is limited. Portables with 16-bit
processors, by the way, don’t have this problem
and usually can give you much more ROM than
you can fill.

ROM cartridges — or even just plug-in ROM
chips as found in the Panasonic HHC — are a
good way of handling the what-do-you-do-with-
the-ROM problem. There’s no problem with
contention for the same memory location
between two programs because one can be
removed and the other plugged in. Again, think
of a ROM cartridge as a sort of permanent,
unchangeable, super-speed cassette or disk. It's
a form of secondary storage of programs sup-
plied by vendors (or even your own programs, if
you have access to technicians who can burn
PROMS — programmable read-only mem-
ories — for you).

Tapes

Back in the early days of microcomputing, audio
cassettes were just about the only means of
storing programs and data. Then a few hobby-
ists started interfacing floppy disks to com-
puters, Vector Graphic built a computer with a
floppy disk right in it — and the cassette was
dead.

Until home computers. Floppies, even mini-
floppies, were too expensive for the early home
computer buyers, so cassettes underwent a
resurgence. Once again, though, as floppy
prices continued falling, buyers started opting
for the speed and reliability of disks. Now, it’s
portable computers that are keeping cassettes
alive.

A hook-up to an audio recorder that uses a
standard-size cassette is available on a number
of portable computers. Becoming more common,
though, is the built-in microcassette drive. A
microcassette drive under software control is
easier and more convenient to use than standard
cassettes, but not really any faster. Still, the

weight of a disk drive makes tape a good choice
for a portable.

Floppy disk interface

Floppies and portables don't really go together.
They’re heavy and should not be moved while
in use. But having a connection to a floppy can
be useful when you get back to your home base.
It allows you to store the data that you've
collected onto a permanent, reliable medium.

The use of a disk interface has to be balanced
against the alternative of uploading your data to
another computer. In the first case, you don’t
need to buy a second computer — though the
cost of the disk drives may be almost as much as
a second computer. If you already have another
computer, then all you need is some sort of
communications link between the two. You may
have the necessary software to process your data
already on this other computer which means
that you are spared the expense of buying and
learning another software package to run on the
portable.

If you decide you do need a floppy wired
directly to the portable, then check the
following;:

1. Is the interface serial or parallel? A serial
interface sends 1 bit at a time and is going to
be slower than a parallel interface. This is not
a problem with slow devices like printers, for
instance, because the rate of printing is
determined by how fast the print head can
move and not by how fast the data transfer is.
But in talking about disk drives, then the data
rate to/from the disk becomes important.

2. Is double-density supported? Single density
5.25in (133 mm) minifloppies typically
handle 90K of storage. Part of this 90K will
have to be set aside for a disk operating
system and for various programs, which
leaves little room for data. So, double-density
(about 170K) is much preferred. Even better
are double-sided disks (340K), though here
the diskettes tend to wear out faster. There
are also quad density disks — still more
storage, but less reliable — and a number of
34 in (76-102 mm) microfloppy disks with
varying storage capacities. The Sony 3.5 in
(89 mm) in diskette with its hard plastic case
is a good choice for data reliability. But since
we're going to use our floppy on a desktop,
there’s no particular advantage to a size
smaller than the standard minifloppy. And

12 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

minifloppies are extremely reliable as long as
they’re kept away from dust, coffee, etc.

Printers

An integral, built-in or attachable printer is the
best solution for hard-copy needs. The con-
venience of even small printers makes them
valuable for those times when a full-size printer
is not available, takes too long to hook-up or
can’t exactly reproduce what you want.

How bulky is the printer? How heavy? Is it
something that can be carried around easily? If
the answer to this last question is no, you're
losing the portability you bought your portable
for in the first place.

What kind of print output can you get? Can
you reproduce the entire computer screen,
graphics as well as text? Can it be done at any
time, via a PRINT key, or do you have to go into
a special routine which may overwrite the
screen?

Print quality varies greatly among printers.
Some printers, called letter-quality printers, pro-
duce fully-formed characters. Others, the dot
matrix type, produce characters made up of
dots, just as a display screen does. Dot matrix
printers run the gamut from barely-readable up
to near-letter-quality. If you need a built-in
printer, decide what print quality you're willing
to settle for.

If you don’t need portable printing, then just
make sure that your selected portable has an
interface to enable you to hook up whatever
printer you'll be using. The most common type
of interface is called Centronics parallel, but RS-
232 is also acceptable. If you do use the RS-232
port for a printer, and the portable has only that
one port, keep in mind that you'll only be able
to use a printer simultaneously with another RS-
232 device (like a modem) with difficulty.

Speed is another important factor in choosing
printers. The printer is typically the slowest part
of a computer system and often prevents you
from doing anything else while waiting for
something to finish printing. (Sometimes
RAM — internal or external — can be used to
spool the print file and thus free up the
computer sooner.) Speed is usually given in
cps — characters per second. For comparison
purposes, a fast typist can type on an IBM
Selectric at about 8cps; the popular Epson MX-80
dot matrix printer is rated by the manufacturer
at 80 cps. Unfortunately, all manufacturer-
claimed printer speeds are wrong. Like auto-

mobile mileage ratings, the speed you get may
only be half of what the manufacturer says is
possible. So, use speed ratings to provide rough
estimates only.

Print line width is another major consider-
ation. Most computer output is 80 columns,
some is 132 columns. Anything less than 80 and
you'll find some application programs will wrap
the print around to the next line. If you're doing
spreadsheets, you'll probably want as wide a
line as possible. If you're doing text editing, it’s
not as important. Some programs are starting to
come out now that print sideways so that the
line width is effectively infinite. If that sounds
like just what you need, check to see which
computers/printers it's available for.

RS-232

RS-232 is the standard for data communications
connections. The things to look for here are:
synchronous v. asynchronous, speed, and cable
type. All of the technical aspects are explained in
Chapter 8, Communications. But for those
already familiar with communications, here are
the things to look for:

- Does the port accept a male DB25 connector? If
not, then special cables/connectors will have to
be ordered.

— What speed can the port handle? If you're
using a 300/1200 bps modem then there’s prob-
ably no problem — nearly all computers can
handle this. If you want to connect your
portable directly to another computer for
uploading/-downloading information, then
you'll want to be able to use a higher speed.

- Do you want your computer to ‘talk’ to
another computer using a particular syn-
chronous protocol such as 2780 or 3270? Then
your RS-232 port will need to be synchronous
as well. Otherwise, you’ll have to get a
separate (and expensive) asynchronous-to-
synchronous converter.

If the portable you're looking at has no RS-232
port, then you'll need to buy your modem (and
possibly your printer) from the computer manu-
facturer. Or, possibly, there’s a converter on the
market that will transform what the computer
does have into RS-232. But that approach means
carrying a separate box around.

Other serial ports

A serial port is an interface over which bits are
transmitted one at a time. RS5-232 is the most

WHICH COMPUTER? 13

common serial interface, but sometimes other,
non-standard, non-RS-232 serial ports are seen.
These can be used for a floppy disk interface, TV
interface, or for other special purposes as long as
the particular computer manufacturer supplies
the necessary hook-up. If not — if it’s just been
promised for futher delivery but doesn’t yet
exist — then the port is useless.

Centronics port

Most computer printers will hook up to a
parallel connection called a Centronics interface.
It's given that name because a New Hampshire
printer company designed and popularized that
interface. But since then, most printers (and
computers) have adopted it as the most desir-
able way of connecting a printer. Unlike RS-232,
there is never a need for the user to be
concerned about what signal is on what pin. If
the connection can be physically made, then it
will work.

If there’s a drawback to Centronics connec-
tions, it is that the plug usually used has 36
pins, which would take up quite a lot of space
on a portable computer. Sometimes other plugs
are used, but there’s no escaping the fact that a
serial printer port needs only one data lead,
while an 8-bit parallel port needs at least eight.
But that’s a problem for designers. The problem
for users is generally finding a cable with the
right plug on the end.

Typically, computers with a Centronics prin-
ter interface also have an RS-232 interface. The
main advantage of this is being able to have a
device connected to both ports at the same time.
For instance, you may want to receive data into
your computer from a modem and print the data
at the same time — a difficult task if you have
only a single I/O interface.

Other parallel ports

If you use data acquisition devices in your work,
you'll want to be able to feed directly into the
computer. The best way to do that is if the
machine has a bidirectional parallel port. You
can’t usually use a Centronics parallel port, for
instance, because Centronics ports are set up for
one-way traffic only, i.e., out from the com-
puter. If no parallel port is available, you don’t
have a total loss because parallel data can
usually be converted to serial through a ‘black
box’. Check Chapter 12, Peripherals, for more
information on this.

Built-in modem

Like a built-in printer, an integral modem means
one less piece of equipment to carry around. Of
course, this only works if the phone you want to
use has a modular jack. If it doesn’t — like in a
telephone booth — you’ll still need a separate
acoustic coupler. And modems vary from one
country to another, so a Bell-compatible modem
won’t have much use outside the USA. Some
integral modems are 300 bps, which is a very
common transmission speed. Some others are
Bell 212A compatible, which allows transmission
at either 300 or 1200 bps. The price of 212A
integrated circuits is coming down so we can
expect to see an increasing number of portables
with this expanded capability.

Speed of operation

Head-to-head timings on similar tasks, called
benchmark tests, are really the only way to
compare different computers for speed of execu-
tion. Even then, you'll find that one machine
that does something faster than another may be
slower than the other when doing something
else.

Every computer system has an internal clock.
The faster the clock, the faster things will
happen. Because different computers have dif-
ferent architectures, i.e., are designed dif-
ferently, the clock speed of one machine can’t be
compared against the clock speed of another.
But you can compare two machines that use the
same processor. A 1 MHz 6502, for instance, will
always do things faster than a 0.5 MHz 6502.

The CMOS processors found in many port-
ables, while keeping down power requirements,
are comparatively slow. If execution speed is an
overriding consideration, you should look at
those machines that use standard (NMOS)
processors.

Real-time clock

Every computer has a system clock, but few
have a time-of-day clock. This is one of those
things that you either must have or will never
use. If you're doing data collection, for instance,
and must time-stamp the data as it comes in, the
best way to do it is with a real-time clock. If you
don’t have this clock and still must keep track of
the time you can still do it with a program —
but that way is much less reliable.

A clock/calendar feature may also be nice for
keeping track of appointments, though most

14 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

people will find it more convenient to do this
with a pocket calendar.

Sound generator

Many computer manufacturers, following the
original Apple lead, have provided built-in tone
generators in their machines. These can make a
sort of electronic music which can accompany
game programs, but we’re not sure what else
they’re good for. Perhaps, beeps of different
tones could be used by a program to signal
different conditions during times when the
operator is not watching the screen. But we
haven’t seen any software that makes use of
this. If you plan on writing your own software,
pick a portable whose sound generator is loud
enough to catch someone’s attention. (The
manufacturer may have decided to reduce the
power drain on the batteries by keeping the
volume of the sound at a very low level.)

Bar code interface

Supermarkets are finding out that having the
UPC bar code on products can cut their costs.
Scanning groceries at the checkout line elimin-
ates keying errors by the clerks, speeds up
checking out, always provides current prices,
automatically tracks sales by item and category,
and automatically deducts sales from inventory
levels. Similarly, many other items that are
handled or tracked manually can be bar coded
for more efficient processing.

If your portable doesn’t have a bar code
interface, you can still add bar code capability by
using a reader that talks to an RS-232 inter-
face — but you’ll be sacrificing portability and
paying more to boot. But just having the
interface doesn’t mean you're all set to go. What
the bar code wand reads has to be interpreted by
software — of which there is very little on the
market. (See Chapter 10, Inventory/Stock Track-
ing for HX-20 programs.)

You'll also need good quality bar code labels
— a poorly imprinted label cannot be read by
the reader. (Fortunately, bar codes have built-in
error checking, unlike OCR for instance, so the
scanner will either be able to read the bar code
or it won't.)

Expandability

In selecting a computer, you get the ore that fills
most of your needs today. If you know what
your needs are going to be tomorrow, then

those needs should also enter into your purchas-
ing decision.

If you know that your needs are going to
change over time, or if you have no way of
foreseeing your future needs, then there are two
alternatives. You can select a computer for a
particular period of time and replace it with
something else when it has outlived its useful-
ness. Or, you can expand and add onto the
computer you select today. The path you take
depends on the computer you choose. It de-
pends on the price and on how expandable the
computer is. So, expandability to meet future
needs (even when you don’t know those needs)
has to be something to take into consideration
today.

The one major thing to look for in determin-
ing the expandability of a computer is whether
or not the internal system bus is brought to the
outside. If it is, then additional hardware can
easily be added — at some gain in size and
weight. If the system bus is closed off — and
this applies to desktops as well as portables —
then the computer system is really closed off to
future additions.

Figuring out what is the system bus on a
particular computer may be a job for an engin-
eer. But a short-cut is to look and see what add-
ons are offered by the manufacturer of the
computer. If all the add-ons connect into stan-
dard I/O ports like RS-232 or Centronics, then
you can reasonably assume that this is the only
means of connection. On the other hand, if you
see add-ons like memory expansion units, then
you know at least part of the bus can be
connected up externally. Keep in mind that
there is probably no room inside the portable to
add more circuits — unlike Apple or IBM PC
desktops, for instance — so that an external
hook-up is critical from the standpoint of
expandability.

Software compatibility

Though you may not have realized it, we've
already talked about hardware compatibility.
Things like RS-232 ports and Centronics printer
interfaces allow you to use pre-existing peri-
pherals on the market. Suppose, though, that
the portable manufacturer didn’t supply an RS-
232 port but instead wanted you to use his own
proprietary design. Then if you wanted to hook
up a modem, you’d have to hook up his modem
or hope that your computer will be popular

WHICH COMPUTER? 15

enough so that someone else will come out with
a compatible modem.

What kind of software can the portable run?
(Not just what is available from the vendor.) If
your portable can run software written for MS-
DOS systems, CP/M systems, the Apple II or the
TRS-80 Model III, then you have access to a
large variety of business and personal programs.
Anything else, and you have to hope that:

(a) the manufacturer is going to supply all the
software you will need;

(b) the machine will be popular enough to
attract a large number of third-party software
publishers;

(c) you will be able to write all of your own
software.

Having Microsoft BASIC on the machine can
help. Even though BASIC is too slow for many
applications, there are some where it’s useful
— and Microsoft BASIC programs are often not
hard to convert from one machine to another.

Earlier, we mentioned compatibility. There
are several kinds. There’s run-time compatibility
and media compatibility, to just name two. Run-
time compatibility means that a program which
will run on one machine will run on the other. It
does not mean that you can pick up a disk (or a
tape) from one and plug it into the other —
that’s media compatibility. So even if your
portable can run MS-DOS applications (run-time
compatibility) you may have no easy way of
actually getting the programs into the machine.
A couple of years from now, this may not be a
problem as computer stores will have equipment
to download, i.e., transmit programs right into
your machine — but it’s something to consider
right now.

Bundled software

Every computer comes with some software
included. Usually it’s in ROM, sometimes it’s on
a disk. In earlier years what you got was the
BASIC language and/or a rudimentary operating
system. Now, the trend is to bundle more and
more software in with the hardware — on the
theory that it costs the computer manufacturer a
lot less to buy the programs in bulk than it
would cost you the customer to buy them one at
a time. The drawback, of course, is that you may
end up paying for programs you don’t need.
Usually, you'll get an operating system in-
cluded with the machine. This is the hardest
kind of software to compare because the best

operating systems are those that you don’t see.
That is, if you can get your work done without
the operating system getting in the way then
you've got a good operating system. It's the
operating system that takes care of the mechan-
ics of reading/writing to I/O devices from your
programs. Most operating systems provide
means to keep track of separate files and
programs in memory or on secondary storage; a
multi-tasking operating system may even let you
run several programs at one time. On portables,
look for a HELP facility that will guide you as to
what to do next, and possibly, for small screen
portables, text compaction/expansion for
efficient screen usage.

Another feature worth looking for but which
has only recently become popular on desktops
and has not filtered down to portables, is the
ability to add device drivers. Basically, what this
means is that as new hardware add-ons come
onto the market, the operating system can be
adapted to use them. MS-DOS version 2 and
DOSPLUS version 3.5 are two such operating
systems.

You're likely to get a programming language
with the system too. That language will prob-
ably be BASIC. BASIC is relatively easy to learn
and is especially useful for ‘quick-and-dirty’
solutions to problems. Microsoft BASIC, in its
various flavours, is the one most often seen on
microcomputers (exceptions: Apple, Atari). A
program written for one Microsoft BASIC
machine, say the IBM PC, will run with only
minor changes on another Microsoft BASIC
machine, say the HX-20 (source code compati-
bility). That is, everything else being equal: no
graphics, no disk access, etc. Chapter 3, HX-20
BASIC, describes the typical Microsoft BASIC set
of statements and variations thereupon. Keep in
mind that many portables are squeezed for
memory, which means that some BASIC fea-
tures may be left out.

One feature that Microsoft BASIC doesn’t
have is program overlay control. Since memory
space is at a premium, there may not be enough
memory to hold your entire program. The
solution is to keep part of the program out on
tape and just bring it in when the first part of
the program has finished. Some BASICs allow
for this and it can be very useful.

Are you going to be doing program develop-
ment work on the portable? Then look for good
development/debugging tools. All Microsoft
BASICs have a TRON and a TROFF (trace
on/off) and will let you hit break at any time to

16 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

display variables, but you'll want more than that
for serious programming.

Sometimes the BASIC offered will include a
compiler. Compiled code runs faster than the
usual interpreted code. It also has the advantage
of being able to be burned into a PROM so that
the operator can run the program without
messing with disk or tape. But not all compilers
have that capability, and not all portables can
use PROMs.

Productivity tools are a favourite for bundled
software on a portable. Calculators and calen-
dars show up a lot, but this is not what you
bought a computer for. If the portable has a real-
time clock and calendar, then look for software
that puts them to real use rather than trivial
things that are better done with a pen and a
pocket calendar.

Word processing may be built-in, as it is on
the HX-20 and Radio Shack Model 100. In that
case, make sure that it does what you want it to
do and does not take up memory space that you
would have wanted to use for something else.
Remember, if a program is on disk or tape it can
be removed from the machine in favour of
something else. But a factory-installed ROM,
unless specifically built to be removable, is not
going to be easy to plug/unplug frequently.

If communications is a required function, then
having the vendor supply a program to do it is
well worth it. Communications programs are
usually written in assembly language which
means that few people will tackle it. (The HX-20
communications program in this book is written
in BASIC, but it’s s-l-o-w.)

Data management is another thing to look for.
It's possible to cheat and use the word process-
ing program to manipulate data, but a real data
management program is better. If you're buying
your portable to keep track of information, then
look for this program. As a minimum, a good
data manager should allow you to perform the
following functions:

- search for specific data;
- review data;
- insert/delete/update data.

Its very rare to find vertical application
software, that is, programs for your specific
business/profession, bundled in with the hard-
ware. An exception to this is the Computone
SST for insurance agents. The next best thing is
an application generator. This is a program that
lets you write programs, theoretically with less
work than trying to do it in BASIC. We say

theoretically, because application generators
have produced mixed results.

Documentation

The quality of the documentation is something
that must be judged individually. There is much
concern right now in the industry about making
machines more ‘user-friendly’. Often this takes
the approach of making the user manuals more
oriented to the novice. That’s great, if you're a
novice. If you're familiar with computers, how-
ever, you'll find yourself wasting time wading
through a lot of unnecessary verbiage. Probably
the best approach for a vendor to take is the one
used by Epson America with its BASIC manuals
— separate tutorial and reference volumes.

How do you rate documentation? One thing
to try is to sit down with a manual and the
computer, without the salesman hovering over
you, and try to follow the manual’s explanation
of some feature. If you can’t figure out how to
use the feature without calling the salesman
over, it’s certain you’ll have the same problem
back in your office.

Ease of use

This is one of those criteria that can be judged
only after the computer has been used for a
while. But perhaps you can borrow a machine
from a dealer or a business associate. Because if
the computer is a pain to use, all of the previous
criteria will not matter.

How will you be using the computer, physi-
cally speaking? On your lap? On a desktop? Can
you place the machine so that it is comfortable to
use and the display is easy to see?

How easy is the software to use? How easy to
program if you plan on doing any pro-
gramming? '

Price

The price range for what we have been calling
portables runs from under $400 to over $8000.
That huge differential makes it all the more
important that you identify your needs and do
not spend $4000 when something for $1000
would do, or conversely, that you don’t try to
save money by buying the $1000 unit when a
careful analysis of your requirements would
show that only a $4000 unit could do the job.

Few people can afford to buy what they really
want, so which features are you prepared to
trade off?

WHICH COMPUTER? 17

Picking a vendor

From whom do you buy your computer? Do you
go for the lowest price, or the dealer you guess
would support you the best? If you are going to
need help in getting started with the computer,
pick a local dealer. If you want a computer for a
special purpose, look for a dealer who has
helped others accomplish that same purpose.

Picking a manufacturer

We're down to the home stretch. There are a
few things that relate to the manufacturer
himself that we must consider. After all, we're
not just buying a piece of equipment, we’re also
buying the company that stands behind the
product. (We hope).

Does the manufacturer support independent
software developers? If he doesn’t, and you can
tell this by seeing what percentage of program
titles come from independent publishers, then
available software is going to be limited.

Is there a hotline for technical support? If you
have a technical question, how fast can you get
an answer? Keeping in mind that most dealers
will not have trained their staff to be portable
experts, you'll have to go to the manufacturer.
How will the manufacturer receive you?

Is there a publication dealing with the
machine? Are there users’ groups where you can
go for information and solace?

Perhaps the biggest question is: how many
computers is the manufacturer selling? The more
units sold, the more of a support industry will
grow up around the machine. Selecting a
popular machine is more than just going along
with the crowd, it’s having a crowd coming
along with you.

SUMMARY

We can take everything we’ve covered and put it
all into one large shopping list. Then we’d select
from the list below those must-have and nice-to-

have features we’d want. And then match the
various portable computers against the list.

Size

Weight

Display size
Display readability
Keyboard type
Keyboard layout
RAM

ROM

Floppy disk interface
Built-in printer

Serial and parallel ports
Built-in modem

Speed of operation
Graphics

Real-time clock

Sound generator

Bar code interface
Expandability

Software compatability
Bundled software
Documentation

Ease of use

Price

Picking a vendor
Picking a manufacturer

On the following pages are descriptions of 20
more-or-less portable computers and almost-
computers. Factual information is drawn from
specifications provided by the manufacturers
and is believed to be accurate, but its accuracy
cannot be guaranteed. Also, product specifica-
tions and prices are always subject to change by
the manufacturers.

Just for comparison purposes, we’re provid-
ing a list of these models in order of price,
display and weight. This is not a ranking,
inasmuch as other features, like software, may
be more important to you personally. As addi-
tional portables come out, they can be inserted
into these lists. Note Retail discounts may be
available for some models and not others.

Table 1.1

By approximate price

Model Approx Display Microprocessor Data Weight Internal
price ($) size type cartridges? (Ib) modem

TI CC-40 250 1x 31 proprietary no 1.4 no

Panasonic HHC 400 1x 26 6502 yes 1.4 no

18

Table 1.1 continued

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Model Approx Display Microprocessor Data Weight Internal
price ($) size type cartridges? (Ib) modem
Casio FP-200 500 8 x 20 CMOS 8085 no 3.3 no
Microwriter 500 1% 16 ? no 1.1 no
MSI-88 775 2x16 ? no 1.4 no
HX-20 800 4x20 CMOS 6801 no 3.8 no
TRS Mdl 100 800 8 x 40 CMOS 8085 no 3.9 300
NEC PC-8201 800 8 x 40 CMOS 8085 yes 3.8 opt 300
Workslate 900 16 x 46 CMOS 6803 no 3 300
HP-75C 1000 1x 32 proprietary -1- 1.6 no
Toshiba T100 1500 8 x 40 Z-80A yes 16 no
Typecorder -3- 1 x40 ? no 3 no
Sharp PC-5000 2000 8 x 80 8088 yes 11 no
Xerox 1810 2200 3 x80 CMOS 2-80 no 5 300/1200
MOST 100 2500 8 x 80 CMOS Z-80 yes 5 300
Husky 3000 4 x 32 CMOS 2-80 no 4.4 no
Teleram 3000 4 x 80 Z-80L no 9.75 no
Datec 3500 2 x40 CMOS 2-80 no 4 no
UDI-500 4000 8 X 40 CMOS 2-80 -2- 12.8 opt 300/1200
Gavilan 4000 8 x 80 8088 yes 9 300
GRiD 8200 24 x 80 8086-8087 no 10.8 300/1200
-1- Uses magnetic cards for data storage.
-2- Contains two disk drives.
-3- Price may be dropped from $1500 to $800.
Since the above chart was originally produced, Table 1.2
many prices have changed. Also, some new By weight
models have come to market, while some older " .
models have been discontinued. The general 9
trend is that more performance is available for oo - 11 05
less money than previously, though the relative
order of the companies listed above has stayed Texas Instruments CC-40 1.4 0.6
very much the same. As we've suggested '
before, probably the best use of this and the MSI-88 14 0.6
following charts is as guidelines for you to make p,,.5onic HHC 1.4 06
up your own comparison charts.
Hewlett-Packard HP-75C 1.6 0.7
Sony Typecorder 3 1.4
Converg. Tech. Workslate 3 1.4

Table 1.2 continued

WHICH COMPUTER?

19

b kg Ib kg
Casio FP-200 3.3 1.5 MicroOffice 100 5 23
EPSON HX-20 3.8 1.7 Gavilan 9 4.1
NEC PC-8201 38 1.7 Teleram T-3000 9.76 44
Radio Shack Model 100 3.9 1.8 GRiD Compass 10.8 4.9
Datec Electronic Notebook 4 1.8 Sharp PC-5000 1 5.0
Husky 44 2.0 Universal Data UDI-500 12.8 5.8
Xerox 1810 5 23 Toshiba T-100 16 7.3
Table 1.3
By display size
GRiD Compass 24 x 80 (GRiD) Casio FP-200 8 x 20 (Casio)
Converg. Tech. Workslate 16 X 46 (Wksl) Husky 4 x 32 (Husky)
Gavilan 8 x 80 (Gav) EPSON HX-20 4x20 (HX-20)
MicroOffice 100 8 x 80 (MO) Datec Electronic Notebook 2 x40 (Datec)
Sharp PC-5000 8 x 80 (Sh) Sony Typecorder 1 X 40 (Sony)
NEC PC-8201 8 X 40 (NEC) MSI-88 2x 16 (MSI)
Radio Shack Model 100 8 x 40 (TRS) Hewlett-Packard HP-75C 1x 32 (HP)
Toshiba T-100 8 x 40 (Tosh) Texas Instruments CC-40 1x 31 (TN
Universal Data UDI-500 8 X 40 (UDI) Panasonic HHC 1x 26 (HHC)
Teleram T-3000 4 x 80 (Tele) Microwriter 1x16 (MW)
Xerox 1810 3 x80 (Xerox)
GRID
W1 Sh MO Gav

;;;’

Kl TRS/NEC Tosh Tele uDI

3 erox

Casio
Husky
HX-20 Datec
T HHC HP/MSI Sony

Price —»

Fig. 1.1 Display size v. price (not drawn to scale)

20 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Fig. 1.2 Radio Shack TRS-80 Model 100

RADIO SHACK TRS-80 MODEL 100

Specs at a glance

Price: Under $1000

Size: 8.25 in X 11.6 in X 2 in (210 mm X
295 mm X 51 mm)

Weight: 3.9 Ib (1.8 kg)

Keyboard: Full-travel, 72 keys including 8 PF
keys, 41 special graphics characters, 32
graphics block characters, 10 key integrated
numeric pad

Physical display: LCD, 8 lines by 40 columns

Virtual display: None

Processor: CMOS 8085

RAM: 8-32K

Secondary storage: External cassette

Graphics: 240 X 64 dots

Clock: Yes

Sound: 5 octaves with half tones

RS-232: 75-19,200 bps

Integral modem: 300 bps

Integral printer: No

Bar code reader interface: Yes

Power: 20-hr AA disposable batteries or AC

Software: In ROM: extended Microsoft
BASIC, text editor, scheduler, address list,
communications

The Model 100 is manufactured by Kyoto
Ceramics (Kyocera) of Japan to Tandy’s speci-
fications for marketing in the US. (A very similar
model is marketed by NEC.)

The Model 100’s outstanding features are its
relatively large display and its built-in 300 bps
modem, which are excellent features for a
machine in this price range. This makes the
Model 100 a good choice for taking notes on-site
for later uploading to another computer. The
large screen also makes the Model 100 a better
choice for program development than other
machines with small screens where so little of
the program can be seen at one time. While
Model 100 BASIC lacks a built-in editor, pro-
grams can be entered and edited with the built-
in full-screen text editor.

A Centronics parallel part allows easy hook-
up to nearly all of the desktop printers on the
market. The serial RS-232 port is also note-
worthy: it allows bps rates up to 19.2 kbs. A

WHICH COMPUTER? 21

ROM cartridge slot is also present, though the

necessary cartridges are not being sold by Radio
Shack at this time.

Hardware

The disadvantages, hardware-wise, of the 100
are no RAM cartridges, no microcassette drive,
in fact, no built-in means of saving data on
removable media at all. You can save data onto a
separate cassette recorder, but this method has
proven notoriously unreliable in the past, both
with other Radio Shack machines and with
equipment from other vendors. Also: no printer,
no virtual display, no provision for hook-up to a
larger screen.

The keyboard is only fair, with non-recessed
keytops. For touch typists, finding the home
keys without looking can be a problem. But
many writers seem to have adopted this
machine in preference to others on the market.

Software

The extended BASIC looks very nice, providing
control of interrupts which is unusual in a
BASIC. Radio Shack’s four other ROM programs
are really only two programs, a text editor and a
modem auto-dialler. The text editor is adequate
for common usage, keeping in mind that it
comes free with the machine. Probably the most
marked thing about the Model 100 is that a lot of
programmers seem to be interested in writing
programs for it. By the time you read this, many
of those programs should be out. Look for them
in mail-order ads in the micro magazines. (Radio
Shack stores sell very little software written by
outside developers; other computer stores rarely
sell software for Radio Shack machines.)

A hands-on review of the Model 100 appeared
in the magazine Byte (5/83) and also in Personal
Computer World (8/83).

Fig. 1.3 NEC PC-8201

NEC PC-8201

Specs at a glance

Price: Under $1000

Size: 8.25 in X 11.6 in X 2.5 in (210 mm X
295 mm X 64 mm)

Weight: 3.8 1b (1.7 kg)

Keyboard: 67 key typewriter-style, with 5
shiftable PF keys

Physical display: LCD, 8 lines by 40 columns,
characters user-definable, interface for TV/-
monitor

Virtual display: No

Processor: CMOS 8085

22 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

RAM: 16-64K

Secondary storage: RAM cartridges, external
cassette, optional floppy disk interface

Graphics: Yes

Clock: Yes

Sound: Yes

RS-232: Yes

Integral modem: Optional 300

Integral printer: No

Bar code reader interface: Yes

Power: AA batteries or AC

Software: ROM: Terminal emulation, ex-
tended Microsoft BASIC. On tape: text
formatter, investment portfolio, loan evalu-
ator, appointment scheduler, bar code
reader, calculator, two games, music com-
position, RAM bank switch utility, terminal
mode selection utility

While NEC has never admitted it, this unit is
probably manufactured by Kyoto Ceramics
(Kyocera) to NEC’s specifications just as Kyocera
builds the Radio Shack Model 100 to Tandy’s
specifications. What NEC has done with the
basic hardware, however, is to correct many of
the deficiencies in the Radio Shack package.

The biggest plus is the RAM cartridges. Being
able to save data and programs on something
you can easily plug in and out is an extremely
useful option for any computer.

The PC-8201 also has ports for floppies and a
larger CRT display, interfaces missing from the
Model 100.

Fourteen programs are bundled into the price
of the PC-8201, which makes the computer at
least somewhat usable right from the beginning.
We haven’t seen these programs but would
guess, given the time frame over which they
were written, that they’re not very sophisti-
cated. However, programs written for the Model
100 —and we expect to see quite a few —
should be runable on the PC-8201 with no more
than minor changes. But, you'll have to type
them in by hand or download them as the two
machines reportedly use different cassette
formats.

A full review of the PC-8201 appeared in the
magazine Byte (6/83).

CASIO FP-200

Specs at a glance
Price: Under $500

Size: 8.6 in X 12.2 in X 2.2 in (220 mm X
310 mm X 56 mm)

Weight: 3.3 1b (1.5 kg)

Keyboard: 69 key full-size keyboard, with
integral numeric pad and 5 shiftable PF
buttons; external 10 key numeric pad is
optional

Physical display: LCD, 8 lines by 20 columns

Virtual display:

Processor: CMOS 8085

RAM: 8-32K

Secondary storage: Interfaces for cassette,
disk drive

Graphics: 160 X 64

Clock:

Sound:

RS-232: 300 bps

Integral modem: No

Integral printer: No

Bar code reader interface:

Power: AA batteries or AC

Software: ROM: application generator, BASIC

If you took the NEC notebook computer, cut
down on some of the features (and the price as
well), you'd end up with the FP-200. The screen
is half the size of the NEC or the Radio Shack
100, though twice as large as that of the HX-20.
Unlike the NEC, additional RAM cannot be
added to the FP-200 in the form of cartridges —
at this time, anyway. Like the NEC, a floppy
disk or cassette recorder can be used for
data/program storage. However, the floppy is
just single-sided, single density (70K); the cas-
sette runs only at 300 bps.

Additional peripherals include a four-color
mini plotter—printer and a graphics printer.

The FP-200 comes with ‘CETL’, an interactive
table language that is claimed to enable users
with no knowledge of BASIC programming to
develop their own applications. As of the time
we write this, there is no other software
available for the machine. Casio’s choice of the
same 8085 processor used in the NEC/Radio
Shack portables should enable it to pick up some
of the software written for those machines. But
the smaller screen and undoubtedly different /O
interfaces might make the conversion task non-
trivial.

All in all, we’d have to say that there is no
particular advantage to the Casio unit over the
others, except price. If price is the major
consideration — and it might be just that for
students — then look at the FP-200.

WHICH COMPUTER? 23

Fig. 1.4 Teleram T-3000 (mock-up)

TELERAM T-3000

Specs at a glance

Price: Under $3000

Size: 9.75 in X 13 in X 3.5 in (248 mm X
330 mm X 89 mm)

Weight: 9.75 Ib (4.4 kg)

Keyboard: Full-travel, 83 keys, separate
numeric pad, 16 PF keys

Physical display: Tiltable LCD, 4 lines by 80
columns, 160 displayable characters

Virtual display: 24 lines by 80 columns

Processor: Z-80L (low-power NMOS Z-80)

RAM: 64-320K

Secondary storage: optional office station with
floppy disk drives

Graphics: No

Clock: No

Sound: No .

RS-232: 75-19,200 bps

Integral modem: No

Integral printer: No

Bar code reader interface: No

Power: 5-hr rechargeable batteries or AC or
auto cigarette lighter

Software: CP/M 2.2, Crosstalk communica-
tions program.

Three things about the T-3000 differentiate it

from its lower-priced portable relatives: a full-
width (80 column) screen, the popular CP/M
operating system, and up to 256K of bubble
memory, which can be configured as a pseudo-
disk.

Teleram was the first to offer an 80 column
screen and this could be an important advantage
over many of its competitors — for people who
really need a screen that wide.

The CP/M capability opens up a very large
variety of possible packaged software. However,
you'll have to download these programs into
your T-3000 yourself. Since this computer
doesn’t have removable storage media, the
communications port is the only way to get
binary data into the machine (except for buying
the Office Station).

Teleram’s Office Station is a desktop device
that provides additional capability, such as a
graphics/text CRT, printer port, floppy disk
drives, additional memory, more RS-232 ports,
networking, etc.

The use of magnetic bubble memory is a nice
touch. Programs like Wordstar, for instance, that
would normally do a lot of disk I/O on a desktop
computer, can be run without any disk delays at
all. The reason is that bubble memory, while not
as fast as semiconductor memory, is consider-
ably faster than floppy disks.

24 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Fig. 1.5 GRiD Compass

GRiD COMPASS Sound: Yes
RS5-232: Yes
Specs at a glance Integral modem: 212A (300/1200 bps)
Price: $8150 Integral printer: No

Size: 11.5in X 15 in X 2 in (292 mm X Bar code reader interface: No

381 % 51) Power: AC
Weigh??(; 8 1b (Zl;nkg) Software: Optional: MS-DOS compatible
Keyboard: 57 full-travel keys operating system, management tools

(word processing, spreadsheet, data
management, graphics), Microsoft-
compatible BASIC, communications (TTY,
3101, VT100), program development

Physical display: Flip-up EL, 24 X 80

Virtual display: None

Processor: 8086, 8087 arithmetic co-
processor

RAM: 256K tools

Secondary storage: 384K internal bubble The Compass has become generally recog-
memory, floppy/hard disk interface nized as the Rolls Royce of portables. For

Graphics: 320 X 240 dots those to whom price is no object, e.g., upper

Clock: Yes level management at large corporations and

WHICH COMPUTER? 25

government agencies, there is nothing com-
parable.
Advantages include:

—an electro-luminescent (EL) display, the
clearest and easiest-to-read of any display
technology;

—a central support system at GRiD head-
quarters (GRiD Central) that can download
software to your Compass;

- networking via a Compass Central desktop
system

— high-speed microprocessors

—a variety of interfaces, including RS-422 and
GPIB

That’s all in addition to the usual features
of a portable, such as light weight, convenient

size, full keyboard, etc.

There are disadvantages, of course. This is
not a field machine — it requires line power
(AC) at all times. Even if you were to connect
a battery with a DC-AC converter, it would
drain in no time at all.

The overall appearance is aesthetically
pleasing — even snazzy. I can’t think of any-
one who uses a computer who wouldn’t like
to have one —even people who don’t use
computers are impressed when they see it.
But at a price of over $8000, it's a purchase
most managers will find hard to justify. If your
company bought you an HP calculator watch
for $750 when they first came out, maybe you
can put one of these on your expense
account. If not, . . .

Fig. 1.6 Husky

HUSKY

(UK: DVS Microelectronics; US:
Automation)

Sarasota

Specs at a glance

Price: Under $3000

Size: 8 in X 9.5 in X 1.75 in (203 mm X
241 mm X 44 mm)

Weight: 4.4 Ib (2 kg)

Keyboards: Membrane-type with audio feed-
back, 40 ‘soft’ keys

Physical display: LCD, 4 lines by 32 columns
Virtual display: No

Processor: NSC800 (CMOS Z-80)
RAM: 16-144K

Secondary storage: None
Graphics: No

Clock: Yes

Sound: No

RS-232: 50-1200 asynch./synch.
Integral modem: No

Integral printer: No

Bar code reader interface: Yes

26 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Power: 14-hr rechargeable NiCad batteries or
45-hr C cells

Software: BASIC, communications protocols
(including TTY, 2780), bar code reader
(Code 39, EAN 8/13)

A unit designed for rugged use, the Husky
comes in an unbreakable, waterproof, shock-
proof cast alloy case. This is not a general
purpose office computer, but a machine for
dedicated applications.

The Husky can be customized to the user’s
needs. The keyboard is completely redefinable,
for instance. An optional parallel port for
electronic instrumentation is available. Custom
software is offered by both DVW and by
Sarasota Automation.

One thing worth noting that might be other-

wise missed is the capability for synchronous
transmission — a feature not found in most
other portables.

The Husky has found use in Britain for
scientific data collection, vehicle tracking, inven-
tory control, and meter reading, among other
uses. The British Army and the Royal Air Force
have also found it useful for collecting main-
tenance data.

How rugged is it? One user reports that his
Husky was squashed flat by an airport truck —
but it continued to work without any data loss
(PCW 10/83).

Sarasota Automation, which distributes the
Husky in the US for DVW Microelectronics,
intends to begin the manufacture of the unit
themselves.

Fig. 1.7 Datec Electronic Notebook

DATEC ELECTRONIC NOTEBOOK

Specs at a glance

Price: Under $3500

Size: 9 in X 14 in X 2 in (229 mm X 356 mm
X 51 mm)

Weight: 4 1b (1.8 kg)

Keyboard: Raised membrane with audio feed-
back, 79 keys including numeric pad and 11
PF keys.

Physical display: LCD, 2 lines by 40 columns,
optional backlighting

Virtual display: None

Processor: NSC800 (CMOS Z80)

RAM: 48-504K

Secondary storage: None

Graphics: None

Clock: Yes

Sound: No

RS-232: 2 ports, asynch./synch., 300-9600 bps

Integral modem: No

Integral printer: No

Bar code reader interface: Yes

Power: 16-hr rechargeable NiCad batteries or
various external power sources, AC and
DC

WHICH COMPUTER? 27

Software: Multi-tasking OS, data entry execu-
tive, application generator (usable only
with a separate terminal), BASIC inter-
preter only with a separate terminal)

The Datec unit is geared towards a particular
market niche: outdoor, ‘hostile’ environment
use. The ABS plastic case with built-in handle is
claimed to be a completely sealed, immersible
unit: resistant to shock, vibration, moisture, dirt,
sand, grease, oil, etc. For customers needing this
type of capability, Datec will provide a develop-
ment package and will even write customized
software. The keyboard can be customized as
well, with a 50 PF key layout substituting for the
normal one. Normal operating temperature is
0°C to 50°C (32°F to 122 °F), and can be
optionally extended.

The EPROM based operating system pro-
vides, among other things: multi-tasking, inter-
task communications, interrupt handling, real-
time clock control, file and record management,

operator-definable transmission protocols.

The unit also comes with a Data Entry
Executive which includes a TTY compatible
terminal simulator, a HELP function, a SEARCH
function, date editing functions, display com-
paction/expansion of text, relational data
management, data and program transmission to
another computer.

The application generator permits a novice
user to define a data entry application by
answering questions about data format and
relationships.

The amount of memory that the unit can hold
is quite high, which could make it better for fast
access to larger databases than on other port-
ables. However, at the time of writing, the cost
for each additional BK of RAM is $215.

The Datec Electronic Notebook is an en-
hanced version of a prevous unit from Data
Entry Systems Corp. (Descor) called the
Electronic Book.

Fig. 1.8 Convergent Technologies Workslate

CONVERGENT TECHNOLOGIES WORKSLATE

Specs at a glance

Price: Under $1000

Size: 8.5 in X 11.25 in X 1 in (216 mm X
286 mm X 25 mm)

Weight: 3 1b (1.4 kg)

Keyboard: 60 button-type keys including
separate numeric pad

Physical display: LCD, 16 lines by 46 columns
Virtual display: Yes

Processor: 6303 (CMOS 6803)

RAM: 16K

Secondary storage: Microcassettes

Graphics: No

Clock: Yes

Sound: Yes

RS-232: Optional external 9600

28 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Integral modem: Auto-dial, auto-answer
300 bps

Integral printer: Optional

Bar code reader interface: No

Power: AA batteries or A/C adaptor or
optional NiCad rechargeable batteries

Software: ROM: Terminal emulation, work-
sheet program with spreadsheet, memo
pad, appointment calendar, phone list
functions

The Workslate, first of a series of portable
computers from Convergent Technologies
designed to meet specific needs, can be des-
cribed as a computerized tool for business-
people.

Rather than being a true general purpose
computer, the Workslate, as it has been des-
cribed by one company spokesman, is a replace-
ment for a computer. The Workslate is an easy
to use tool for doing spreadsheets, keeping track
of appointments, taking notes at meetings,
holding addresses and phone numbers, and
tying into remote computers as a terminal.

One outstanding feature is that both voice
and data can be recorded on microcassettes. This
allows spoken as well as written notes to be
saved. Coupled with the auto-answer modem,
it's even possible to use the Workslate as a
telephone answering machine: answering the

phone and playing back a recorded message.
With the auto-dial function, you can even
initiate calls, using the Workslate as a speaker
phone.

The built-in clock with alarm capability allows
tasks to start up automatically at particular times
of the day. The optional battery-powered printer
attachment gives 4 color printing with 40 or 80
column width, plus a 9600 bps serial interface.

Taskware microcassette tapes provide pre-
designed worksheets, similar to spreadsheet
templates. These help in setting up worksheets
for personal tax, sales reporting, financial state-
ments, cash management, etc.

The only disadvantage that we can see in the
design of the Workslate is the limited amount of
user memory. The Workslate has a lot of
functionality built into it, but does not appear to
have enough memory to support very many
functions simultaneously. Using memory for
appointments or memos will subtract from the
amount of memory available for spreadsheets —
and 16K does not allow much of a spreadsheet
to begin with. Perhaps the most common use of
the Workslate will be for executives who already
have access to a computer, use that computer for
most data storage and processing, and just carry
around part of their data in the Workslate.

A hands-on review of the Workslate appeared
in the magazine Byte (11/83).

XEROX 1810

Specs at a glance

Price: Under $2200.

Size: 9 in X 16 in X 2 in (229 mm X 406 mm
X 51 mm)

Weight: 5 1b (2.3 kg)

Keyboard: 67 typewriter style keys, including
10 function keys

Physical display: LCD, 3 lines by 80 columns,
interface for TV or monitor

Virtual display:

Processor: NSC800 (CMOS version of Z-80)

RAM: 64K

Secondary storage: microcassette tape re-
corder, plug-in ROM modules, optional
base station with floppy disk drives

Graphics: Yes

Clock: Yes

Sound: No

RS-232: Yes

Integral modem: 300/1200 bps

Integral printer: No

Bar code reader interface: No

Power: 10-hr NiCad batteries or AC

Software: Calendar, four-function calculator,
terminal emulator, text editor, Microsoft
BASIC.

Designed and manufactured by the new Sun-
rise Systems, the 1810 is Xerox’s first portable in
a planned series. It is not as physically impres-
sive on first glance as some of the other
machines on the market, probably due to the
relatively small screen. But behind the wide
packaging are hidden some very nice features.

The built-in microcassette recorder can handle
either data or voice. Up to 200K bytes of data
can be saved, or 30 minutes of ordinary voice
recording. Besides recording to tape, the exter-
nal microphone can also be used to talk on the
built-in phone. With an RS-232 port plus a
modem plus a phone, the 1810 really has
communications covered.

Theoretically, with its Z-80 compatible pro-

WHICH COMPUTER? 29

Fig. 1.9 Xerox 1810, with the 1850 base station

cessor and full 64K of RAM, the 1810 is
compatible with the universe of CP/M software.
We say theoretically, because most CP/M soft-
ware expects a cursor-addressable 24 line screen.
How this will be handled on the 1810 remains to
be seen, literally.

With ROM modules, users have the advant-
age of having programs always ready to use,
i.e., no time-consuming loading of tapes nor
worries about tape readability.

A base station, the 1850, is available as an
accessory to the 1810. The 1850 is a dual
processor (Z80 and 8088), dual floppy box with
128K of RAM expandable to 512K. Additional
I/O ports allow an RGB color monitor, printer,

and more communications options. Add a dis-
play and you have a computer capable of
running CP/M, CP/M-86 or MS-DOS software.
The price for the 1850 is $2495.

The 1810 is also available without a display for
$1595 as the 1805.

There are now several companies, including
Teleram and Toshiba, making computers that
can be used as either straight portables or as full
desktop computers, with no sacrifice of function
in either case. This could be the way to go for
anyone who splits his computing between in-
office work and out-office work. '

A hands-on review of the Xerox 1810 ap-
peared in the magazine Byte (6/83).

GAVILAN

Specs at a glance

Price: Under $4000

Size: 11.4 in X 11.4 in X 2.75 in (290 mm X
290 mm X 70 mm)

Weight: 9 1b (4.1 kg)

Keyboard: Full-travel, 60 keys including
numeric pad, plus touch pad

Physical display: Flip-up LCD, 8 lines by 80
columns, zoom feature, video monitor
interface

Virtual display: None

Processor: 8088

RAM: 32-160K

Secondary storage: 3 in (76 mm) microfloppy
disk drive or RAM cartridges

Graphics: 64 x 400

30 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Fig. 1.10 Gavilan

Clock: No

Sound: No

RS-232: Up to 9600 bps

Integral modem: 300 bps

Integral printer: Optional

Bar code reader interface: No

Power: 8-hr rechargeable batteries or AC or
auto cigarette lighter

Software: MS/DOS operating system, BASIC
language, word processing, calculation,
communications, forms processing, port-
able secretary. Optional: application
development system, other applications
packages, Pascal language

The Gavilan is a cross between notebook units
like the HX-20 and briefcase types like the
Osborne. At the same time, it offers some
unique features not found even on many larger

machines. The touch pad, for instance, is a Lisa-
like device that provides fingertip control of a
simulated desktop. The LCD display has a
reverse zoom feature that allows the user to look
at the format of an entire text page, then move
the physical window to edit any part of that
page. An in-context help command provides
instructions on what to do next or tells you what
just happened.

The 8088 processor allows the Gavilan to run
MS/DOS, the same operating system that runs
on the IBM PC and many other machines. Note,
however, that it may be hard to locate MS/DOS
application software on the 3in (76 mm)
Hitachi-type diskettes. Also, the limited amount
of memory for a 16-bit machine plus less-than-
standard screen size will prevent some MS/DOS
applications from running.

A special portable printer plugs into the back

WHICH COMPUTER? 31

of the unit. (The 50 cps printer weighs 5 1b
(2.3 kg) and has its own battery.)

While Gavilan Computer Corp. is a new
company, it is run by some old hands, including
the former head of Zilog, maker of the ubiqui-
tous Z-80 microprocessor. Gavilan has appar-
ently had no trouble obtaining venture capital
funding, and as a consequence, should be

around for a while.

All in all, this machine looks like a winner —
incorporating many features that non-technically
oriented managers and professionals will appre-
ciate. If the sticker price doesn’t scare you away,
we’d recommend you make a careful examin-
ation of the machine.

Fig. 1.11 MicroOffice 100

ROADRUNNER/MICROOFFICE 100

Specs at a glance

Price: Under $2500

Size: 7.8 in X 11 in X 3 in (200 mm X 285 mm
X 74 mm)

Weight: 5 Ib (2.3 kg)

Keyboard: 73 full-size keys, with 8 PF keys

Physical display: Tiltable LCD, 8 lines by 80
columns

Virtual display:

Processor: NSC800 (CMOS Z80)

RAM: 48K

Secondary storage: Four battery-powered
cartridges, each holding 32K ROM or 8-16K
RAM

Graphics: 64 x 480

Clock: No

Sound: No

RS-232: Yes

Integral modem: 300 bps

Integral printer: No

Bar code reader interface: No

Power: 8-hr rechargable, removable NiCad
battery pack

32 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Software: CP/M-compatible operating system
Optional ROM packs:text editor, spread-
sheet, Microsoft BASIC, communications,
scheduling, SuperCalc spreadsheet, more
promised

This is another in the office-away-from-the-
office class of portables. MicroOffice Systems
Technology Inc. is a new company that seems to
have put the right pieces together with this
portable, their first product.

Opening the lid on the MicroOffice 100
powers the unit on and shows a compact, but
well-laid out design. There’s a full keyboard
with programmable function keys as well as

special function keys — HELP, UNDO, etc. —
plus separate cursor keys. Cartridge slots for
holding data and programs are easy to get to.
The screen is the state of the art at the time the
product was announced (in September 1983) —
8 X 80. It's readable and appears to use the
typical 5 X 7 dot matrix without lower case
descenders.

A 37-pin connector is present to allow for
future expandability. The manufacturer suggests
that this connection may eventually be used for
a disk drive attachment, but stresses that the
owner of a MicroOffice 100 really doesn’t need
to mess with disks or tapes as the cartridges take
their place.

Fig. 1.12 Sharp PC 5000

SHARP PC-5000

Specs at a glance

Price: Under $2000

Size: 12 in X 12.8 in X 3.4 in (305 mm X
326 mm X 87.5 mm)

Weight: 11 Ib (5 kg)

Keyboard: 71 full-travel keys, including 8 PF
keys

Physical display: Flip-up LCD, 8 lines by 80
columns

Virtual display:

Processor: 8088

RAM: 128-256K

Secondary storage: 128K bubble memory cart-
ridges, 64K RAM cartridges, disk interface
(320 Kbyte minifloppies), cassette interface

Graphics: 640 X 80 dots

Clock: Yes

Sound: Yes, 3-octave range

RS-232: Yes

Integral modem: No

WHICH COMPUTER? 33

Integral printer: Optional

Bar code reader interface: No

Power: Rechargeable NiCad batteries or AC

Software: BASIC, MS-DOS. Optional: word
processing, communications, spreadsheet,
executive planner, data manager

As with their pocket computers, Sharp seems
to have put a number of good features in a
reasonably-sized package.

Memory is no problem with the Sharp PC-
5000. You can put data and programs on bubble
memory cartridges or on RAM/ROM cartridges.
That's in addition to having up to 256K of RAM
built-in.

The Sharp PC-5000 is physically larger and
heavier than most diskless portables. And that’s
without adding the optional 80-column thermal/
plain paper printer. But the availability of the
printer (and the disk interface) means that you
have nearly full desktop capability in a package
considerably lighter and less bulky than the
Osborne-style portables.

No information is available on how long the
batteries will go between recharges, but we’d
guess: not very long. The 8088 processor is not a
CMOS processor, which means that it will drain
power considerably. All that memory will also
be a drain. But that 8088, and that memory, and
MS-DOS, gives the PC-5000 an advantage over
other portables: the capability of running soft-
ware written for IBM PC class machines.

The PC-5000 has another interesting feature:
an open bus structure. This doesn’t provide any
immediate benefit to most users, but it gives
hardware designers a means of interfacing
additional functions right into the machine. That
turns into a long-range benefit for users, assum-
ing that the PC-5000 becomes popular enough to
interest the add-on hardware companies.

Sharp’s optional modem is worth a look. It
not only has autodial via software in the PC-
5000, it can also be dialled via a keypad built into
the modem. There is also a speaker and
microphone for conference calls.

Fig. 1.13 Universal Data Inc. UDI 500

UNIVERSAL DATA UDI-500

Specs at a glance

Price: under $4000
Size: 11 in X 13 in X 3.1 in (280 mm X
330 mm X 79 mm)

Weight: 12.8 Ib (5.8 kg)

Keyboard: 59 button-type keys, including 6 PF
keys

Physical display: LCD, 8 lines by 40 columns

Virtual display: Not at the present time

Processor: swappable — CMOS Z80 and

34 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

CMOS 1805 currently available

RAM: 64-256K

Secondary storage: dual 3.5 in (90 mm) Sony
microfloppy disks, double-sided disks (1.5
Mbyte total capacity) optional

Graphics: not at present time

Clock: No

Sound: No

RS-232: 50-19, 200 bps

Integral modem: Optional 300 or 1200 bps

Integral printer: No

Bar code reader interface: No

Power: 12-hr (average disk use) NiCad batter-
ies or AC

Software: With Z80 card — optional software
includes Perfect software series (word pro-
cessing, spelling checker, data filing,
spreadsheet), communications, Microsoft
or Digital Research BASIC, CP/M operating
system. With 1805 card: DOS and BASIC.

With two built-in disk drives, the UDI-500 is
more like a desktop ‘transportable’ than the
others we’ve discussed, but its relatively light
weight and freedom from a power cord put it
squarely in the portable class.

The UDI-500 is the first portable we’ve heard
of with 2 microfloppies. That reduces weight in
comparison to an Osborne-type unit. Unfortu-
nately, microfloppy disks are even less standar-

dized than minifloppies — at least minifloppies
are all 5.25 in (133 mm) — so there’s no telling
whether your local dealer will ever have the
software you want on 3.5 in (90 mm) diskettes.
While UDI promises to copy customer’s pro-
grams onto the microfloppies, there is no
guarantee that this is a permanent policy. Of
course, software can always be downloaded.

This is another computer with a CMOS

version of the popular Z-80 microprocessor. This
provides compatibility with the CP/M world
while still preserving the low-power require-
ments of a portable.

Like other true portables, memory contents

are retained even with the power switch off —
the advantage of CMOS chips again. If programs
and data are used without disks, then up to 80
hours of computer time can be obtained without
recharging.

The UDI-500 comes with two slots for circuit

boards. A microprocessor card takes up one slot,
another can be used (in conjunction with the
1805) for any standard RCA accessory card.

Universal Data, which has been in the hand-

held terminal business for several years, also
manufactures a hand-held computer somewhat
similar to the MSI unit described in this chapter,
with 32-176K memory and BASIC programm-
ability.

HEWLETT-PACKARD HP-75C

Specs at a glance

Price: Under $1000

Size: 5 in X 10 in X 1.25 in (127 mm X
254 mm X 32 mm)

Weight: 1.6 1b (0.7 kg)

Keyboard: 64 calculator-style keys

Physical display: LCD, 1 line by 32 columns,
TV interface

Virtual display: 1 line by 96 columns

Processor: Proprietary CMOS, similar to HP
Series 80

RAM: 16-24K

Secondary storage: Magnetic card reader,
external digital cassette, plug-in ROM
modules

Graphics: On optional external plotter

Clock: Yes

Sound: Beeper

RS-232: Optional external

Integral modem: No

Integral printer: Optional external

Bar code reader interface: Optional

Power: Rechargeable NiCad batteries

Software: Internal ROM: BASIC language

Optional ROM modules: Surveying and maths,
VisiCalc, text formatting, data communica-
tions, others

The HP-75C was one of the first portable

computers, coming out at a time when true
portability meant being hand-held and a one-
line screen was the state of the art. Technology
has rapidly moved on from there, but the HP-
75C still has some virtues not found in other
portables.

Hewlett-Packard designers have never wor-

ried about being compatible with the rest of the
world. That shows in the HP-75C. But it's
something that HP’s customers — mostly
engineers — don’t seem to mind. The HP-75C
comes with an HP-IL connection rather than the
usual RS-232 port, though external conversion is
possible. But this makes it compatible with other

WHICH COMPUTER? 35

Fig. 1.14 Hewlett Packard HP-75

HP peripherals such as plotters,
modems.

The magnetic cards, each holding 1.3K, can
be used to store data or programs. No other
portable manufacturer has opted to use mag
cards — they were last commonly seen about 10
years ago on IBM word processing typewriters
— but they serve the purpose of providing

printers,

convenient and reliable storage.

HP-produced software is provided on digital
cassettes or on ROM capsules, as well as on mag
cards. The ROM modules easily plug in and out
of three separate ports, allowing up to 48K of
additional read-only memory.

A hands-on review of the HP-75C appeared in
the magazine Byte(9/83).

TEXAS INSTRUMENTS CC-40

Specs at a glance

Price: $250

Size: 5.75 in X 9.25 in X 1 in (146 mm X
235 mm X 25 mm)

Weight: 1.4.1b (0.6 kg) _

Keyboard: 69 limited-travel keys, including a
separate numeric pad and 10 integrated PF
keys

Physical display: 1 line by 31 columns,

optional TV/monitor interface (24 X 40)
Virtual display: 1 line by 80 columns on LCD
Processor: Proprietary CMOS (99xx series)
RAM: 6-18K
Secondary storage: External wafer tape drive
Graphics: No
Clock: No
Sound: No
RS-232: Optional external
Integral modem: No
Integral printer: No

36 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Fig. 1.15 Texas Instruments CC-40

Bar code reader interface: No

Power: 200-hr AA batteries or optional AC

Software: BASIC, optional applications soft-
ware on ROM cartridges and wafertapes

Like HP and Panasonic, TI has opted to come
out with a compact unit that can be hooked into
a large number of separate TI peripherals. This
means of connection is called the Hex-bus.
Existing peripherals include: video interface,
modem, printer/plotter, wafertape digital tape
drive, RS-232 interface. Except for the video
interface, all can be battery powered. But, of
course, all add to the weight of what starts out
to be a very lightweight unit.

One outstanding feature of the CC-40 is the

use of the digital tape. This unit, which is similar
to the well-regarded but little known Exatron
Stringy Floppy, holds up to 48K. Software
packages available on ‘Wafertape” include photo-
graphy, maths, engineering, statistics, inven-
tory, and more.

ROM cartridges can add up to 128K of pre-
programmed software. ROM programs available
from TI include word processing, an assembler,
and games.

In our opinion, there are three reasons to buy
this computer: there is a program available for it
that you need and can’t find elsewhere, you
already own Hex-bus peripherals or your budget
is extremely limited. The CC-40 holds little
attraction for anyone else.

MSI-88

Specs at a glance

Price: $775

Size: 7.75 in X 3.6 in X 2.25 in (197 mm X
91 mm X 57 mm)

Weight: 1.4 Ib (0.6 kg)

Keyboard: 28 key, calculator-style

Physical display: 2 lines by 16 columns
Virtual display: None

Processor:

RAM: 16-128K

Secondary storage: None

Graphics: No

Clock: Yes

Sound: No

WHICH COMPUTER? 37

Fig. 1.16 MSI/88s

RS-232: Up to 4800 bps
Integral modem: Optional
Integral printer: No
Bar code reader interface: Yes
Power: Disposable or rechargeable batteries
(rechargeable via AC or auto)
Software: Communications, program loading
Optional: bar code including UPC, EAN,
Interleaved 2 of 5, 3 of 9, Codabar, Code
11

MSI has long been a manufacturer of hand-
held terminals for inventory control. The Model
88, introduced in 1980, was the company’s first
step towards a computer, but it's not a complete

step. While the Model 88 can be downloaded
with a program from another computer, it does
not support stand-alone user programming.
Unlike general purpose computers that are
designed as an extension of the office, the MSI-
88 is intended to be used by its operator for a
specific, pre-assigned task such as inventory
control, meter reading, route accounting, etc.

The arrangement of the keyboard in a 7 X 4
matrix keeps the size of the unit down. This
does not aid data entry, though, as the operator
must press SHIFT for any alphabetic characters.

Standardized and/or custom applications are
available from MSI.

PANASONIC HHC

(Manufactured by Matsushita. Similar models
distributed by Olympia and Quasar.)
Specs at a glance

Price: Under $400, but options can bring price
to over $2000

Size: 3.75in X 9 in X 1.2 in (95 mm X 228 mm
x 30 mm)

Weight: 1.4 1b (0.6 kg)

Keyboard: Calculator-style, 65 keys, including
7 PF keys

Physical display: LCD, 1 line by 26 columns,
external color TV adaptor available

Virtual display: Up to 80 columns by a

38

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Fig. 1.17 Panasonic HHC

variable number of lines (limited by
memory)
Processor: 6502
RAM: 8K — 52K externally via cartridges
Secondary storage: RAM cartridges
Graphics: No
Clock: Yes
Sound: No

RS-232: External adaptor, 50-9600 bps asynch
Integral modem: Optional external
Integral printer: Optional external
Bar code reader interface: No
Power: rechargeable batteries or AC adaptor
Software: Operating system with file manage-
ment
Opt: ROM capsules for communications,

WHICH COMPUTER? 39

SNAP FORTH, scientific calculator,
BASIC compiler/interpreter, financial cal-
culator, statistics, application generator,
time billing, plotter graphics, text editing

We've included this hand-held computer in
our survey because it can be purchased with
enough peripherals to fill a suitcase. In fact, you
can buy a specially designed attaché case to hold
color plotter, RS-232 interface, printer, modem
with cassette adaptor, RAM cartridges, TV
adaptor, I/O adaptor, AC adaptor.

The HHC allows the use of battery-powered
RAM cartridges as well as ROM ‘capsules’. As
we pointed out earlier, the RAM cartridges help
keep the HHC wuser from running out of
memory. Unlike users of other portables who
eventually must store the contents of memory
on cassette or upload it to another system, the
HHC user can simply plug in a new RAM
cartridge for each new function.

The plug-in ROM capsules are also a nice
touch: you can set up your machine so that it
runs the software you select rather than wasting
memory on something you don’t really need. It
also saves loading time, of course, to have your
program always in ROM rather than having to be
loaded from cassette. If you have access to an
Apple, the EPROM Writer package plus an
EPROM ‘burner’ will allow you to store your
own applications in ROM.

Despite more software and peripherals avail-
able than any other under $1000 portable, sales
of the HHC are reportedly slow. Perhaps it looks
and feels too much like a calculator and not
enough like a computer. But with the amount of
functionality provided, plus customization avail-
able, this unit should be well suited to a number
of different applications. .

In mid-1983, Panasonic announced a new lap-
size computer. However, production plans for
this machine have currently been shelved.

Fig. 1.18 Toshiba T-100

TOSHIBA T100

Specs at a glance

Price: Under $1500

Size: 11 in X 16.5 in X 4 in (279 mm X
419 mm X 102 mm) + display: 5.5 in X
10 in X 1.5 in (140 mm X 254 mm X
38 mm)

Weight: 16 Ib (7.3 kg)

Keyboard: Full-travel, 89 keys including
separate numeric pad, 8 PF keys

Physical display: Detachable LCD, 8 lines by
40 columns, video monitor interface

Virtual display not known

Processor: Z80A

RAM: 64K

40 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Secondary storage: RAM/ROM cartridges,
cassette interface, floppy disk interface

Graphics: 64 X 320

RS-232: Yes

Integral modem: No

Integral printer: No

Bar code reader interface: No

Power: AC

Software: BASIC language, CP/M with
optional disks

The Toshiba approach is quite a bit dif-
ferent from that of other companies making
‘lap” portables. Rather than designing a port-
able from scratch, they took their desktop
computer and made a portable out of it.

The advantage is: you can take your desk-
top computer with you, without having to
cart around something with the bulkiness and
weight of a briefcase-sized ‘transportable’.
(The disks and the CRT can be left back in
your office.) Many portables are designed to

be used with another computer — the T100 is
all-purpose.

The disadvantage is: AC line power is
required. Unlike battery-powered computers,
no attempt was made with the T100 to reduce
electrical usage: the T100 uses no CMOS
chips and runs its Z80A processor at the full
rated speed.

But the Toshiba does have one leg up on
many portables: RAM and ROM cartridges.
RAM cartridges, which can hold up to-32K,
allow the user to save programs and data
without bothering with tape. The 32 Kbyte
ROM cartridges provide a means to run appli-
cation or system software easily, though such
software is not currently available.

A Centronics parallel port, in addition to an
RS-232 port, allows hook-ups to external
printers and modems.

A hands-on review of the T100 appeared in
the magazine Creative Computing (11/83).

Fig. 1.19 Sony Typecorder and attachments

SONY TYPECORDER

Specs at a glance

Price: Under $1500, but may be reduced to
$700

Size: 8.5 in X 11 in X 1.5 in (216 mm X
279 mm X 38 mm)

Weight: 3 1b (1.4 kg)

Keyboard: 70 typewriter-style keys
Physical display: LCD, 1 line by 40 columns
Virtual display: 1 text page

Processor not known

RAM: 2K

Secondary storage: Microcassette drive

WHICH COMPUTER? 41

Graphics: No

Clock: No

Sound: No

RS-232: Yes

Integral modem: No

Integral printer: No

Bar code reader interface: No

Power: 5.5-hr AA batteries or rechargeable
batteries or car battery or AC

Software: Word processing only

The Sony Typecorder is not quite what you
think of when you think of a portable computer,
but it’s certainly more than a terminal.

Outwardly, the Typecorder resembles an HX-
20. It might not be too much a stretch of the
imagination to say that the HX-20's designers
were influenced by the physical design of the
Typecorder. But the Typecorder is a relatively
old machine, having been introduced in

December 1980. As a consequence, this single-
purpose note-taking machine lacks many of the
features found in today’s generation of portable
computers. The only reason to look at one now
is that it comes with a built-in voice-recording
facility. Yes, the same microcassette tape that
can handle typed input will also record voice.
That's probably a useful enough feature for
some people for them to overlook the Type-
corder’s other deficiencies. (Check the descrip-
tions of the Convergent Technologies and Xerox
portables for a similar capability.)

The Typecorder provides the following text
functions: margins, tabs, erase line, delete/insert
character, scrolling, store/retrieve, ‘steno’ keys,
and a page/line number display.

Add-ons are available: acoustic coupler, port-
able printer, office printer, electric typewriter
actuator, telex tape puncher.

Fig. 1.20 Microwriter

42

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

MICROWRITER

Specs at a glance

Price: Under $500

Size: 4.5in X 9in X 2 in (229 mm X 114 mm

X 51 mm)
Weight: 1.1 1b (0.5 kg)
Keyboard: 6 button keys
Physical display: LCD, 1 line by 16 columns
RAM: 8K
Secondary storage: cassette interface
Graphics: No
Clock: No
Sound: No
RS-232: Yes
Integral modem: No
Integral printer: No
Bar code reader interface: No
Power: 30-hr rechargeable NiCad batteries
Software: Word processing only

And now for something. . . The layout of the
universally used QWERTY keyboard was said to
derive from the designer’s wish to slow down
the typist. A good typist could cause the early
typewriters to jam by typing too fast. So, a
keyboard was laid out that required much finger
movement. Now, with electronic keyboards,
there has been more and more talk of replacing
QWERTY with something else. Microwriter is
definitely something else.

Microwriting is based on the shape of the
letters of the alphabet, which the user forms
with the fingertips of one hand. A sixth key, hit
with the thumb, adds editing controls.

Like most portables, the idea is to enter text
for later transmission/printing. For some, it
succeeds admirably. Others will look for a larger
screen and the ability to run a variety of
programs.

Designed by an American (in 1978), it was
first manufactured and marketed in Britain (in
1982) by Microwriter Ltd.

THE HX-20

This chapter covers:
Introduction to The HX-20

‘Any given program will expand to fill all of
available memory.” (With apologies to Parkinson)

The Hardware Components: Processor, Memory, Display,
Keyboard, Printer, Real-Time Clock, Tone generator, Power
Supply, Bar Code Interface, RS-232 port, High-Speed Serial Port,
Microcassette Drive, Cassette Interface, PROM Cartridge Inter-
face, Floppy Disk Interface, TV Interface, Memory Expansion

Unit

Environmental considerations

Documentation and technical support

Warranty
Prices

INTRODUCTION TO THE HX-20

Specs at a glance

Price: $800

Size: 8.5 in X 11.375 in X 1.75 in (216 mm X

290 mm X 44 mm)
Weight: 3.8 Ib (1.7 kg)
Keyboard: Full-travel, 68 keys including 5

shiftable PF keys, 42 special graphics char-

acters, integral numeric pad

Physical display: Tiltable LCD, 4 lines by 20
columns

Virtual display: Yes, maximum in any one
dimension is 255 characters, total size
limited by available memory

Processor: Dual 6301s (CMOS 6801)

RAM: 16-32K

Secondary storage: Built-in microcassette

Graphics: 32 x 120 dots

Clock: Yes

Sound: 4 octaves, with half tones

RS-232: 110-4800 bps

Integral modem: No

Integral printer: Yes

Bar code reader interface: Yes

Power: 50-hr rechargeable NiCad batteries

Software: In ROM: extended Microsoft
BASIC, text editor (US)

The first thing that strikes the observer is that
the HX-20 is an all-in-one unit. Keyboard,
display, tape, printer —all in one compact
package. While a plethora of other portables
have entered the market after the HX-20, none
of them has this combination.

Our HX-20 has held up well — no signs of
wear even after a year of use. Like other Epson
products, reliability is first class. We can report
no major electronic or mechanical breakdowns.
And only one minor one — a looseness in the
tilt knob for the LCD.

PROCESSOR

The heart of any computer system is its micro-
processor(s). The HX-20 comes with two: dual
Hitachi 8-bit 6301s. The 6301 is a CMOS (low-
power) version of the 6801 processor, with some
additional features. The 6801 in turn, was an
enhanced version of the original Motorola 6800,
a chip used in many early hobbyist micro-
computers.

The main microprocessor (mpu) controls the
keyboard, LCD, RS-232 transmission, high-
speed serial interface, bar code reader interface,
and clock. The slave mpu controls the external

0Z-XH uosd3 'z by

THE HX-20 45

Fig. 2.2 Main circuit board
Reprinted courtesy of Epson Corp

cassette interface, microprinter, speaker, and
RS-232 reception. Control of the microcassette or
PROM cartridge is handled jointly by both
processors. The two mpus ‘talk’ to each other
over a serial bus, separate from the main system
bus.

More information on the HX-20's internal
operations can be found in Chapter 5, The 6301
Microprocessor.

MEMORY

The HX-20’s internal memory, also made up of
CMOS chips, is divided into ROM and RAM.
The operating system takes 16K of ROM, BASIC
takes another 16K of ROM. An additional 8K
ROM chip can be plugged in internally. In the
US, this slot is occupied by the SkiWriter word
processing package. Of course, other programs
can be placed in this slot. Epson America
recommends that a dealer makes this installation
because CMOS chips are very sensitive to static
electricity. But a careful user can make the
installation himself. Check your warranty terms,
though, before opening the case.

Besides the.up to 40K of ROM, the HX-20 also
contains 16K of RAM. But a little more than 2.5K
of this is reserved for data used by BASIC and
the operating system, so the user is really only
left with 13.5K. Additional memory, ROM and/

or RAM, can be added via an expansion unit,
described later in this chapter.

User memory in the HX-20 is cut up four
ways. The size of each of these sections can be
reduced to zero (or close to it) or expanded so
far that they will crowd out the other sections.

One section is reserved for use by machine
language programs. This area runs from the low
end of the user memory up to a value that you
set, via the MEMSET statement in BASIC. (Use
of the MEMSET statement tells BASIC not to use
this part of memory.)

Another section is reserved for what Epson
calls ‘RAM files’. Unlike data stored in BASIC
variables which are cleared out before a BASIC
program is re-run, data stored in RAM files
remains there until you purposely clear it.
(Note The HX-20’s memory is always provided
with power, even when the ‘power’ switch is
‘off.) RAM files can also be shared among
several BASIC programs — more on that in
Chapter 3, HX-20 BASIC.

The screen display also steals from user
memory (RAM) and the larger the virtual screen
display the less RAM is available for other
things. (The concept of the virtual screen is
explained later in this chapter.)

The fourth use of memory is, of course, by
BASIC programs. This includes both the pro-
gram itself and any data it acts upon.

The limitation of 16K internal RAM on the

46 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Fig. 2.3 Internal RDM in the HX-20. On this unit, the spare ROM slot is
occupied by HCCS Forth. The 6301 processors sit in the covered area
to the left of the exposed ROM section

HX-20 is one that users will have to work
around. Undoubtedly, future models will have
more RAM, but, in the meantime, HX-20 users
will typically find that they are reloading pro-
grams frequently.

DISPLAY

When the HX-20 was first introduced, an LCD
display of 4 lines by 20 characters represented a
big improvement over previous computers.
Only the Teleram T-3000, first shown at about
the same time, used an LCD screen to provide a
larger display, though at a much higher price.
But LCD technology has improved so rapidly
that larger and larger displays are becoming
commonplace.

The small size of the screen is partially
overcome via the concept of the virtual, or
logical, screen. (Software text compression can
also be used.) On the HX-20, the virtual screen
is an area of memory set aside for display
purposes. The physical screen then acts as a
window over this larger area.

If you've used a spreadsheet program, you're
familiar with the window concept. The part of
the spreadsheet you can see is a window on the

entire spreadsheet. If display windows don’t
mean anything to you, just think of looking out
of a car window at a scenic view. As you drive the
car along, you can see more of the scenery, but
you can’t see any more than what is framed in
the window.

You may feel like sticking your head out the
window to see more, but there’s no way you can
do that on an HX-20. But you can drive the car
back and forth and even up and down. You
could set the virtual display, for instance, to 255
lines by 20 columns. Then, using the SCRN,
HOME or cursor keys you can look at different 4
X 20 character ‘pages’ of the display. You could
also, for instance, set the virtual screen size to 24
lines by 80 columns, the size of a standard
terminal.

This introduces the concept of horizontal
scrolling — where the screen must be moved
sideways in order to see an entire line. This is
hard to get used to. If you're like most people,
you'll set the width to 20 and just change the
number of virtual lines.

Each character on the display is made up of a
pattern of dots, up to 5 dots across by 7 dots
down, with 1 dot separating each character from
the next. Despite the fact that this is really a
minimum resolution — lower case characters do

THE HX-20 47

not have descenders, for instance — it’s really
not hard to read at all.

Besides ‘printable’ ASCII characters, the
screen also displays 32 special pre-defined gra-
phics characters. An additional 32 characters can
be defined by the user, usually via a program
that must be reloaded periodically. Each graphic
character is composed from a 6 X 8 dot matrix.
This is not a lot of dots, so each graphic
character can’t be too fancy, but the supplied
ones are mostly recognizable.

Each of the dots mentioned above is individu-
ally programmable. This provides a graphic
display of 120 X 32 dots. On the HX-20, graphics
is written to a different hardware buffer than
text. Both can be superimposed on the same
physical screen and both can be acted upon —
even cleared — independently of the other. (Not
so with the TV display mentioned below.)

Internal switches allow various international
character sets to be displayed — the British
pound sign, instead of the US pound (#) sign,
for instance. Again, this is designed to be a
vendor operation, but a careful user can make
the change. Or, you can change character sets
temporarily by changing certain specified
memory locations, e.g., using the POKE state-
ment in BASIC. Note that adding these special
characters causes the loss of other characters.
The German character set, for instance, will lose
the at sign, square brackets, tilde, etc. But the
user always has the option of defining his own
characters, as mentioned above. The character
set options are: USA, France, Germany, Eng-
land, Denmark, Sweden, Italy, Spain.

All characters are generated via software,
from data stored in the ROM. At this time, only
one other ROM is offered: for the Katakana
character set.

A somewhat fragile adjustment knob allows
the LCD display to be slightly tilted to provide
an optimum viewing angle. This is an important
feature for any LCD display, as this type of
display is only viewable when looked at head
on.

Provision has been made in the basic unit for
an external display, via a high-speed serial port.
When available, this interface could drive a TV,
producing a 16 X 32 text display, 128 x 96
monochrome graphics, or 128 X 64 color gra-
phics (4 colors).

Other displays for the HX-20 may be intro-
duced in the future. Displays are available mono
and color from Oval Automation Ltd, which can
produce 80-column monochrome alphanumer-

ics, a keystroke, line, block and symbol graphics
only. It also offers a 40-column mode and an
HO-20 emulating 32-column mode.

KEYBOARD

The keyboard is the usual QWERTY arrange-
ment with separate keys for special functions.
The keys have recessed tops, a good feel, and
are full-travel. It's easy to touch type on this
keyboard. An 8-character type-ahead buffer
helps. Each key has auto-repeat after a delay,
which is convenient and doesn’t cause any
problem with keybounce, i.e., no duplicate

* letters are unintentionally produced on a single

key press as on some cheaper keyboards.

A NUM key turns part of the keyboard into a
numeric keypad. But the keys are not lined up
as they would be in a real keypad, so this will
take some getting used to. Still, it's a space
saver — an important consideration in a port-
able. The NUM key also locks out the alpha
keys, to reduce data entry mistakes.

A GRPH key turns the keyboard into a
graphics unit. This allows the 32 pre-defined
characters to be typed directly from the key-
board. The numeric keys can also be assigned by
the user to graphics characters via software,
giving a total of 42 graphics produced with the
GRPH key. An additional 22 characters can also
be assigned via software and produced via CTRL
key combinations.

The 5 user programmable function keys are
shiftable, providing 10 combinations. These keys
are pre-defined with BASIC operations, but can
be changed by the user, e.g., via the KEY
statement in BASIC. Five additional combi-
nations can be produced with the CTRL key and
the PF keys. One is assigned to initiating manual
mode on the microcassette. Another is assigned
to copying the screen onto the microprinter.
(This copy can be done at any time, even in
Monitor mode.) The other three combinations
are available for use via a machine language
program.

The rate at which the computer operates can
be changed via the keyboard, by hitting the
PAUSE key to freeze the display and then
pressing a number. This is particularly useful in
slowing down the screen display to a more
readable speed. The PAUSE key can be used any
time to freeze the display temporarily.

A MENU key returns the system to the main
start-up menu, from wherever it happened to

48 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

be. This is not quite as useful as it sounds, as
most programs don’t like it when you leave
them in the middle without exiting in a more
normal fashion. However, a machine language
program can intercept the usual handling of the
MENU key and take some other action, such as
putting up its own menu.

There is a CAPS LOCK key which puts
alphabetic characters into upper case — not
quite like a typewriter's SHIFT LOCK key, but
quite common on computer keyboards. Unfortu-
nately, there is no indicator to let you know
when it’s on.

One bad point about an otherwise very nice
keyboard is that only two keys are reserved for
cursor movement. In order to get vertical
movement of the cursor, the user has to hit
SHIFT and an arrow key. This is clumsy for
word processing or any other full-screen applica-
tion. The HX-20 designers tried to make up for
this by giving us CTRL and arrow key combi-
nations, but we would have opted for two more
cursor keys.

The operation of the DEL key is a little
unusual. Rather than working like a backspace
key and deleting the character immediately
under the cursor, it deletes the character in the
left of the cursor. This takes some getting used
to. You can produce your own backspace key by
using a PF key — this is discussed in Chapter 3,
HX-20 BASIC — but then one PF key is wasted.

When a key is pressed on the keyboard, a bit
is set in a map in memory. A scan routine in the
ROM looks at these bits and converts them into
characters. This is different from a totally
hardware solution which sends a particular
ASCII code back to the computer. A software
driven keyboard is more flexible, but also more
prone to timing mistakes. Hitting the letters I N
V quickly, for instance, will produce the letters I
N Q. U R E can become U R B. (Unfortunately,
this is common to many similar keyboards.)

A good assembly language programmer can
write his own keyboard driver, bypassing the
system keyboard interpreter. In this manner any
special keyboard configuration could be pro-
duced. One important example is the Dvorak
keyboard layout which has been designed
ergonometrically to enable faster typing.

All 128 possible ASCII combinations can be
produced by the keyboard, either with a single
key or a two key combination. For instance,
ESC, a common ASCII code, is produced by
SHIFT/PAUSE. In' addition, other key combi-
nations can produce 65 other 8-bit codes.

PRINTER

The built-in dot-matrix printer operates at 42
lines per minute. A straight conversion to
characters per second, the more usual way to
rate printer speed, yields 17 cps. But a good part
of the printer time is spent feeding from one line
to the next, so the 17 cps would only apply if
each line had a full 24 characters.

The printer uses a special Epson cartridge
ribbon and plain adding-machine-type paper.
Purple and black ribbons are available. The
ribbon is estimated to last for about 10,000 lines.
Both paper and ribbon are easy to change.

The main feature of the printer is that it prints
by dots, rather than by characters. This means
that anything that can be displayed on the
screen can be printed on the printer. This is both
good and bad: it means graphics as well as text
can be transferred to the printer. But it also
means that there are no lower case descenders
on the printout as there are none on the screen.
Like the screen, the dot matrix is 5 X 7. Since
the printer width is 24 characters, 144 dots/line is
possible.

The printer has its own on/off switch. This
comes in handy when using programs that write
to both the screen and the printer — the prin-
ter's being off won’t halt the running of the
program.

Basically, the printer is slow, noisy, and
consumes power. To reduce the power drain,
Epson recommends pulling the paper up by
hand after printing, rather than using the Paper
Feed button. But there’s not much that can be
done about the speed or the noise.

Having a built-in printer is handy, though.
There are many times when you’ll want hard
copy of something on the screen or in memory
and there won’t be another computer or printer
around to send the data to. In addition, there
are some applications for which a printer is
essential, such as in real-time process moni-
toring.

Fig. 2.4

THE HX-20 49

Transam in the UK have produced a utility
which allows text to be printed sideways rather
than the 24 character lines across the paper. It
gives 15 lines of 80 columns which can then be
pasted together to give a conventional page
layout. This is especially useful when word
processing or in similar applications (Fig. 2.4).

REAL-TIME CLOCK

Every computer has a clock. But this system
clock just controls the computer’s internal oper-
ations, it’s not a ‘time-of-day’ clock. The HX-20
includes a time-of-day clock, as well as a
calendar feature. The time and date can be reset
by the user, though normally this need only be
done on a cold start (a complete re-
initialization).

The Hitachi real-time clock provides seconds,
minutes, hours, days of the week, date, month,
year, AM/PM modes, automatic leap year recog-
nition, automatic end-of-month recognition, and
time-of-day alarm. It can also be programmed
to advance and retard at the beginning and the
end of daylight saving time (British Summer
Time).

TONE GENERATOR

The speaker can be programmed to produce
tones over a four octave range. The duration of
each tone can also be set. Probably to avoid
battery drain, the volume is set quite low and
the sound could go unnoticed in a noisy
environment.

The typical application for a tone generator is
for entertainment, as musical accompaniment to
games. However, different tones could also be
used by more serious programs to denote
different types of error conditions, for instance.
Tone duration could be used likewise, though
the only non-entertainment programs we’'ve
seen to use tone duration are Morse Code
trainers.

POWER SUPPLY

The HX-20 is.powered by four nickel-cadmium
(NiCad) rechargeable batteries. If using the
processor and memory only, the machine is
claimed to go 50 hours between charges. (We
haven't tested this.) If you use the printer, tone

generator, cassette, RS-232 interface, etc., you'll
have to recharge more frequently.

The processor can sense a low-power con-
dition (less than 4.5 volts) and will set a flag in
memory to indicate this. If you're running a
BASIC program, the interpreter will interrupt
whatever you’re doing to flash repeatedly a
‘Charge Battery’ message on the screen. The
only way to continue using the HX-20 at that
point is to plug in the AC recharger. Though
part of the Epson documentation leads the user
to believe the batteries will be damaged if the
computer is run while the charger is plugged in,
it's been the general experience that the only
consequence is that recharge-time is increased
from the normal 8 hours.

Epson recommends recharging immediately
upon seeing the ‘Charge Battery’ message.
Otherwise, the company warns you can lose
data and shorten the life of the batteries. Simply
‘turning off’ the HX-20 won’t help, because the
power on/off switch doesn’'t do any more than
set a flag in memory for the software to check.
The HX-20 is always on, even when the display
is blank, always feeding power to the memory.

Another way to ruin the batteries, which are
not easily replaced, is to overcharge them. This
is not hard to do: it will happen if they are left
charging for 2-3 days. You might think that
the HX-20, since it has a clock, would be smart
enough to turn off the charger, but no such luck.
It would also be nice if the HX-20 could tell us of
the state of its battery at any time, but it can’t.

BAR CODE INTERFACE

Most people who use office computers wonder
about the presence of bar code reader interfaces
on many portables. But if you remember that
one of the forebears of the portable computer
was the portable terminal, then the answer is
clear. Portable terminals are heavily used in
inventory control applications and other situ-
ations where bar codes have proved to be a
handy method of tracking items. The designers
of portable computers obviously felt that their
machines could cash in on part of the same
market.

Note that only a hardware interface is sup-
plied, not the actual capability. The wand that
actually reads the codes is available separately.
The software required to interpret the codes
must also be purchased separately.

For those who need to know, the connector

50 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Fig. 2.5 Right side of the HX-20, showing power switch, LCD tilt adjustment
knob, microcassette ejection lever, cassette interface sockets, bar code
reader socket, reset button

used in the Epson is the HSJ0861-01-440
(Seidenki) with a TTL input level. For (much)
more information on bar codes, check Chapter
10, Inventory/Stock Tracking.

RS-232 PORT

For ‘talking’ to other computers or to external
printers, an asynchronous RS-232 port is avail-
able. This requires an 8-pin DIN plug — Epson
supplies the necessary cables. The permissible
speeds are 110, 150, 300, 600, 1200, 2400, and
4800 bps. More on this subject in Chapter 8,
Communications.

HIGH-SPEED SERIAL PORT

Many buyers of the HX-20 who have noticed an
extra DIN plug on the back of the machine have
wondered what it’s for. This is actually part of
the bus between the two microprocessors
brought to the outside. This allows for some
nifty link-ups that would not normally be
expected from a serial port. Of course, adaptors
are required to interface with devices that
normally expect parallel input. What is available
right now is a floppy disk unit and a TV
adaptor. (More information on these may be
found in Chapter 12, Peripherals.)

This asynchronous port can communicate at
four speeds: 150, 600, 4800, and 38,400 bps. If
the system clock of the HX-20 were run at a
higher rate, then a higher speed on this port
would be possible. But, apparently to keep
power requirements down, the system clock is
kept at a lower rate.

MICROCASSETTE DRIVE

The early HX-20s in America were sold without
a microcassette drive. In the rest of the world it
was included, as it now is in America also.

Having a means of saving programs and data
is an important feature of a portable computer.
Some portables make up for it by giving you
extra memory, e.g., Teleram. Some use RAM
cartridges, which is probably the best solution.
Some others seem to be designed not to be used
for very long between connections to a remote
computer.

A microcassette drive is not the ideal storage
medium. For those used to working with floppy
disks, it seems interminably slow. But, unlike
ordinary cassette recorders, the microcassette is
fairly reliable. To ensure reliability further, the
HX-20 writes out every data block on the
cassette twice. If the first can’t be read, it will
automatically try the second.

THE HX-20 51

Fig. 2.6 Rear of HX-20, showing cartridge/cassette lever, AC recharging socket,
RS-232 socket, high-speed serial socket

The HX-20’s microcassette drive can be con-
trolled through function keys on the keyboard.
Stick-on labels tell you which PF keys do
what — as long as you remember that it is
CTL/PFK1 that puts you in microcassette manual
mode.

The microcassette can also be controlled
through software. The WIND statement in
BASIC, for instance, will fast-forward down to a
specific point on the tape. Generally this feature
is used to store different files on the same tape,
manually or automatically keeping track of
which file is where. One warning: the tape can
slip quite a bit on its reel, which can throw off
the tape counter by quite a bit (up to 50% with
some cheap Radio Shack tapes).

One software company, Ffoss Ltd, has used
this capability to turn the microcassette into a
pseudo-disk drive, providing random-access to
what is usually thought of as strictly a sequen-
tially accessed medium. Sophisticated error-
checking is said to make this usage quite
reliable. (Epson Corp. itself does not support
non-sequential access.)

The drive operates at approximately 1300 bps.
For comparison purposes, a Radio Shack TRS-80
Model I runs at 500 bps, a Model III at 1500 bps.

If an entire side of a ‘60-minute’ tape is
written, approximately 50 Kbyte can be saved —
this is a little less than 5900 on the tape
counter — keeping in mind that tape lengths

can vary. Also available are 30 minute and 90
minute tapes.

CASSETTE INTERFACE

For those who must use ordinary cassette
recorders, the HX-20 has a cassette port. Minia-
ture phone jacks for input and output and a
subminiature jack for remote control are located
in the side of the machine. The use of conven-
tional cassette recorders means that longer tapes
can be used and so more data stored.

Data is recorded on both cassettes and micro-
cassettes in the same format. Keeping in mind
that every block is recorded twice with a short
gap between duplicate blocks, then the contents
of every file are: 80-byte header, long gap, one
or more 256-byte blocks of data with long gaps
between blocks, followed by an 80-byte end of
file block.

PROM CARTRIDGE INTERFACE

The microcassette drive interfaces to the com-
puter via a port that can also be used for PROM
cartridges. If you slide off your microcassette

~drive, you’ll see that the HX-20 has been

designed to allow a device with a 12 pin
connector and similar physical size to slide into

52

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Header } Header | .o Data 1 (0) Data 1 (1) Gap Data 2 (0)
(0) T (1)
* B
Gap Gap
o e——
Data n (0) Data n (1) EOF (0) EOF (1)
f—
Fig. 2.7 Microcassette/cassette file format
Reprinted courtesy of Epson Corp
ADDR
0000 Header 0 Filename 8 ASC11 coded characters
--------- 1 (8 bytes) ‘s:?ftiﬂg :v;: o
: Header e
. O-Ie_ad.erl -] 00 : Delete specified file
Header 2
File type 8 ASC11 coded characters
(8 bytes) for file identification
Starting address Starting address of specified file
(4 bytes) Hexadecimal 4 ASC11 coded characters
Header 31
Ending address+1 | Ending address of specified file +1
File O (4 bytes) Hexadecimal 4 ASC11 coded characters
File 1 Date Date of updating specified file, etc.
(6 bytes) 6 ASC11 coded characters
—— = = = - = - (MM, DD, YY)
File 2
--------- Reserved May be used for new ROM versions, etc.
(2 bytes)
Filen
Fig. 2. i
1FFF ig. 2.8 PROM Cartridge format

(8KB)

Reprinted courtesy of Epson Corp

THE HX-20 53

that spot. The operating system software, as
well, will allow the use of a PROM cartridge on
that interface.

This PROM cartridge does not quite work the
way you think it might, however. The cartridge
does not hook directly into the memory bus of
the HX-20. Instead, like a cassette, its contents
must be read into memory. So, PROM carts on
the HX-20 do not provide any additional
memory — what they do is provide a fast means
of loading programs and data.

Each PROM can hold up to 32 sequential files,
with headers identifying the files — again, like
the microcassette.

FLOPPY DISK INTERFACE

The TF-20 disk unit can be attached to the HX-20
via the high-speed serial port. This disk is
described in Chapter 12, Peripherals. A future
possibility for the HX-20 is Epson’s new 3.5 in
(90 mm) disk.

There are some features in the HX-20 that
were designed for disk use: some of the BASIC
commands accept disk parameters, for instance.
But true use of a disk will require a real disk-
based version of BASIC.

TV INTERFACE

A color TV can be attached via a special adaptor
box to the high-speed serial port. When con-
nected, this video screen can display 32 columns
by 16 lines, as a window on a virtual screen.
Two sets of 4 colors each can be set via software:
green-yellow-blue-red or white-cyan-magenta-
orange. In monochrome, 128 X 96 points can be
controlled; in 4-color mode it's 128 X 64 points.
Oval Automation have developed a color/mono
adaptor, mentioned previously.

EXPANSION UNIT

The expansion unit adds more memory to the
basic unit. It also increases the size of your HX-
20 by about 25% and adds another pound. In
case you're thinking of just using one on an
occasional basis, be aware of the following: in
order for the HX-20 operating system to recog-
nize the existence of the extra memory, a cold
start must be done. Ditto for when you remove
it. Also, Epson recommends permanently
attaching brackets (which are supplied) onto the
HX-20 in order to hold the expansion unit
securely.

Fig. 2.9 Expansion unit, showing RAM chips (16K) and two ROM slots

54 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Fig. 2.10

With the expansion unit installed, you get
29,482 bytes of free space, instead of 12,898
normally. Of course, it would also add onto the
1201 that SkiWriter normally leaves you with.

Apparently because of ROM bank switching
via the Menu — we have not tested this — you
can have an optional ROM in the expansion unit
that uses the same memory addresses as BASIC
or a program in the internal ROM slot, like
SkiWriter. The operating system takes up
$CO00-$FFFF (16K); BASIC takes $8000-$BFFF
(16K), SkiWriter takes $6000-$7FFF (8K), ROM
in the expansion unit can go from $4000-$BFFF
(32K). However, any RAM in the expansion unit
overrides ROM at the same location.

The location for added RAM partially conflicts
with SkiWriter, or any optional internal ROM
program, so only 8K of RAM (at $4000-$5FFF)
can be used. There’s no such problem with
BASIC. In any case, 0-32K of ROM can be used.

There are numerous combinations of RAM/
ROM on the HX-20 with the expansion unit.
These are all diagrammed in a 15-page manual
accompanying the expansion unit.

ENVIRONMENTAL CONSIDERATIONS

The HX-20 seems more like an extension to an
office computer than anything else. However,
it’s sufficiently rugged to be used for some types
of out-of-doors applications.

According to the specs, the HX-20 will oper-
ate at 5-35°C (41-95°F). Breakthrough Newsletter,
a publication for users of ‘field’ portable com-
puters, says that the LCD display will not
operate at freezing temperatures, nor at very
high temperatures. Operation of the printer or
microcassette drive is also doubtful at temper-
ature extremes.

Data integrity — maintaining data stored in
memory without dropping bits — is claimed for
a range of —5-40 °C (22-104 °F).

Other specs Humidity range is 10-80% non-
condensing, maximum vibration is 0.25G at
55 Hz; maximum shock is 1 G for 1 ms.

Note that none of these numbers is as good as
those for computers designed specifically for use
in ‘hostile’ environments. But they’ll present no
problems for most people. (We've used our
units both indoors and outdoors with no hard-
ware problems as yet).

DOCUMENTATION AND
TECHNICAL SUPPORT

In the US, Epson America has provided what is
probably the best set of manuals for novices to
come with any personal computer. This incl-
udes: a 2-volume BASIC set (1 tutorial, refer-
ence), an operations manual, a SkiWriter manual
and a microcassette manual. Overseas, docu-
mentation is not quite as plentiful.

THE HX-20 55

What is missing in the US at this time is a
technical reference manual. This is a definite
handicap for those who want to develop sophis-
ticated applications, but will not be missed by
most HX-20 owners. Technical documentation is
available in the UK, however, from Epson (UK)
Ltd dealers.

Epson America has established three regional
service centres (New York, Los Angeles, Dallas)
to handle hardware problems.

A technical hotline has been set up to handle
software problems, but unfortunately it is not
(yet) manned by technically knowledgeable
people. Generally, the hotline refers callers to
the Epson distributor (there are 12 nationally) in
that caller’s geographic area. But distributors, by
and large, are neither close enough to handle
problems face to face nor are they located where
they would have direct contact with those few

Epson America employees really familiar with
the HX-20.

Epson (UK) Ltd has a Customer Service Desk
primarily to support dealers but, when necess-
ary, to help users as well.

WARRANTY

Epson America provides a 90-day limited war-
ranty with the HX-20. This warranty provides
complete coverage for parts and labour, except
for the batteries. The warranty does not apply,
according to Epson, if you remove the serial
number or damage or misuse the computer in
any way. This misuse includes opening the
compartment in the back, to reset switches or
plug in a new ROM. The reason for this is that
CMOS chips are very static-sensitive and it was

Table 2.1
US List UK List
($) (£)

HX-20 (with mc drive) 795 411.00
HX-20 (without drive)
H20MC micro cassette drive 149 75.00
CX-20 acoustic coupler 169
H20RC ROM cartridge (no ROM) 59 45.00
H20EU Memory expansion unit

(w/16K RAM) 159 80.00
Cables
702 audio cassette cables 10 5.70
705 RS232 to DB25 15.00
706 RS232 to CX20 29
707 High speed serial

port to monitor/

floppy controller 9 Oval Automation
714 RS232 to Epson printer 15.00
715 RS232 to printer 29 15.00
716 RS232 to another HX-20

RS232 (null modem) 29 15.00
717 Serial port to another

HX-20 29 15.00
Supplies
HOORFS roll paper (5 rolls) 4.95 2.60
HOOCR ribbon cartridge 4.95 2.20
HOOCT 3-pack microcassette

tape 12.95 4.80
HOOSC carrying case 24.95 8.00
HOOAA battery charger (110 V) 14.95
HOOAAU spare mains adaptor 8.50
HOORB battery pack 39.95
Transam also offers:
Adhesive labels 4.00

American Tourister case

150

56 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

apparently felt that novice users would not
know to earth themselves before touching inter-
nal parts.

Epson (UK) offers 12 month warranty on all
Epson products including the HX-20.

PRICES

Prices change constantly, particularly in the
microcomputer field. They also vary by dealer.
But Table 2.1 gives our best guess on US and UK
list prices. (The US prices from MidAtlantic
Computer Products, the UK prices from Transam
Microsystems.)

3

HX-20 BASIC

‘Variables won'’t, constants aren’t.’

This chapter covers:
Why and how to learn BASIC
What you get in HX-20 BASIC
Commands

Variables

Functions
Statements
Operators
Special characters

What HX-20 BASIC is missing

WHY LEARN BASIC?

The owner of a typical desktop computer has
hundreds if not thousands of packaged pro-
grams to select from. But as the owner of an HX-
20, you're not so lucky. You'll find that to put
your computer to best use you’ll have to write
some of your own programs or rewrite programs
originally written for other machines.

Another thing — most vendors won’t admit
it, but all new software has bugs — the little
errors that the developer didn’t uncover but that
always seem to creep into a program after
you've bought it. If you know some BASIC,
even if you're not a programmer, you can
correct those errors and keep running.

Many packaged business programs require
that you change the way you operate. If you
know BASIC, you may be able to customize this
software to fit more nearly the way you do
business.

LEARNING BASIC

Fortunately for HX-20 owners, Epson has sup-
plied an excellent pair of manuals. The first 240-
page volume is a tutorial, the second is a
complete reference book. Because of the quality
of these books by Kenneth Skier, we’ll keep to a

57

minimum the amount of duplication here.

However, if you haven’t got your HX-20 yet
and don’t have access to these manuals — no
problem. HX-20 BASIC is mostly the typical,
widely-used Microsoft BASIC. Books on learning
Microsoft BASIC (used in the TRS-80, IBM PC,
etc.) can be found in many general bookshops. If
you want to go beyond the beginners’ books on
BASIC, but are not quite ready to dive into
books of programs, then try the Learning Lab.

The Learning Lab was developed by Kriya
Systems and is marketed by Epson America. It's
a 200 page manual plus 11-program cassette that
will guide you, in tutorial fashion, through some
of the more interesting topics in BASIC. This
includes: using random numbers, calculating
interest, doing probability problems, plotting
dots, graphing, displaying gravity and ballistics
curves, music, sorts, and writing a word game.
Each topic includes several example routines,
many with flowcharts. The manuals also include
full explanations of the cassette programs.

WHAT YOU GET IN HX-20 BASIC

The HX-20’s version of Microsoft BASIC in-
cludes all of the ‘standard’ features plus many
new extended capabilities. A list of all of the
statements, functions, variables, and commands

58 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

follows. You can use this list to get an idea of
what you can do in an HX-20 BASIC program,
as an aid in comparing the HX-20 with other
portables, and as an aid in converting programs
written for other computers so that they’ll work
on the HX-20.

While we’re on the subject of what you get,
though, we should mention the screen editor
that is built into HX-20 BASIC. This screen
editor makes entering and changing BASIC
program lines much easier than the more typical
line editors that come with Microsoft BASIC.

First, if you're not very familiar with BASIC, a
few definitions are in order.

Statement — an instruction to the computer.
When you write a BASIC statement, you are
telling the computer to do something.
Command — an instruction to the BASIC inter-
preter. Of course, everything you type in
while in BASIC is processed by the inter-
preter. But a command usually operates on
the program itself, rather than on the data
that the program is going to process. Some-
times, this distinction may seem arbitrary, but
don’t worry about it. We're using this division
here simply for convenience in categorizing
features.

Functions — built-in ~ subroutines, usually
returning a value. Having an already debug-
ged and working routine can save a lot of
programming time.

Variables — locations in memory that contain
changeable data, stored there by BASIC or by
the hardware without any further pro-
gramming requirement.

There are some other concepts you'll need to
know to understand the list of BASIC features.
(These and other terms are also defined in the

glossary.)

Window — what you see in the display screen
is only part of what the computer has stored
in that part of memory set aside for display
purposes. The physical screen can be ‘moved’
across this memory, much as a window in a
moving car lets you see different scenery. The
total area that can be displayed (though never
all at once) is called the virtual screen.

RAM Files — part of memory can be reserved
strictly for data storage. This data can be
accessed much as a coherent collection of
items, i.e., a file. Multiple RAM files are
allowed, but the HX-20 user must keep track of
the beginning, length, and format of each file.

Program Area — one of five partitions that can
hold an HX-20 BASIC program.

Menu — the main menu visible on system
restarts can be extended with the name(s) of
program(s) in the program areas.

In the following list, extensions to the univer-
sal set of Microsoft BASIC capabilities are
marked with an (E). Unless otherwise noted, all
actions occur in the currently logged in program
area. For the included examples, assume that
the variables used contain the following values:

ABCD$='ABCD’ AS="A’ B$='B’
ONE=1 TWO=2 THREE=3
FOUR=4 FIVE=5 TEN=10
TEN$="10’

Functions

Functions can be used in different ways. For
instance:

A = INT(5.4)
A = INT(10/3)
IF INT(A/B) > 10 THEN . . .

ABS — absolute value of an expression
Example: ?ABS(FOUR-FIVE) prints 1

ASC — ASCII value, in integer format, of a character
Reverse is CHR$ Example: ?ASC(AS$) prints 65

ATN — arctangent in radians, single precision
Example: ?ATN(1) prints .785398

CDBL — integer to double-precision number
conversion Example: ?CDBL(TEN/THREE) prints
3.333333253860474 (The result is only valid to 7
digits)

CHR$ — numeric to ASCII conversion
Example: ?CHR$(65) prints A

CINT — round off an integer Example: ?CINT(4.6)
prints 5

COS — cosine in radians, single precision
Example: 2COS(1) prints .540302

CSNG — return a single-precision number
Example: ?CSNG(3.33333333) prints 3.33333

CSRLIN — locate the cursor’s vertical position on the
virtual (not physical) screen (E)
Example: ?CSRLIN might return 19

EOF — test for end of file Example: IF NOT EOF(1)
THEN INPUT#1,A$

EXP — raise e to an exponent Example: ZEXP(TWO)
prints 7.38906

FIX — drop (not round-off) the fractional part of a
number Example: ?FIX (4.6) prints 4

FRE — return amount of available memo
Example: ?FRE(X) prints total available memory

?FRE(X$) prints available string space

HEX$ — decimal to hex string conversion. (E) There
is no function for the reverse Example: HEX$(65)
equals 41

INKEY$ — return the key (if any) that is being

HX-20 BASIC 59

pressed Example: 10 IF INKEY$=""THEN 10

INPUT$ — obtain raw (unedited) input from the
keyboard, device or a file. (E),
Examples: 2INPUT$(5) will get five characters from
the keyboard and display them ?2INPUT$(3,#1) will
get three characters from file #1 and display them

INSTR — search a character string for an embedded,
smaller string and return its starting location (E)
Example: 2INSTR(ABCDS$,B$) prints 2

INT — returns a number which is the largest whole
number not greater than the original number
Example: ?2INT(4.6) prints 4

LEFT$ — obtain leftmost part of a character string
Example: ?LEFT$(ABCDS$,2) prints AB

LEN — obtain the length of a character string
Example: ?LEN(ABCD$) prints 4

LOF — obtain the number of characters in the
communications input area (E)
Example: ?2INPUT$(LOF(1),#1) prints any charac-
ters received

LOG — natural logarithm Example: ?LOG(TEN)
prints 2.30259

MID$ — select a string of specified length, starting at
a specified point, from within another string
Example: ?MID$(ABCD#$,2,3) prints BCD

OCT$ — decimal to octal conversion (E)
Example: ?OCT$(TEN) prints 12

POS — locate the next byte in a file or the horizontal
position of the cursor (E) Example: 2“HI“;POS(0)
would print 2

RIGHT$ — pick off the rightmost characters of a
string Example: 2RIGHT$(ABCDS$,1) prints D

RND — obtain a single precision random number
between 0 and 1 Example: ?RND(1) might print
.207991

SGN — determine whether a number is positive,
negative or zero Example: ?SGN(FOUR) prints 1

SIN — sine in radians, single precision
Example: ?SIN(1) prints .841471

SPACE$ — produce a blank string of specified length
(E) Example: ?SPACE$(20) prints twenty blanks

SPC — display (on the screen or microprinter) a
specified number of blanks (E) Example: PRINT
“LEFT” SPC(11) “RIGHT”
displays: LEFT RIGHT

SQR — square root Example: ?SQR(FOUR) displays
2

STR$ — number to character string conversion
Example: ?LEFT$)STR$(TEN),2) displays [blank]1
(The first character of the new string is always a
blank)

STRING$ — produce a string of specified length,
using like characters Example: ?STRING$(20,“~")
prints twenty hyphens

TAB — jump to a horizontal position on the screen or
microprinter Example: 2“GOOD";TAB(10);"BYE”
will print GOOD in column 0 and BYE in column
11

TAN — tangent in radians, single precision
Example: ?TAN(1) prints 1.55741

TAPCNT — the value of the microcassette’s tape
counter (E) Example: ?TAPCNT would display 0
after a WIND

TIME$ — time of day (HHMMSS) Example: ?TIMES$
may print 13:55:42

USR — call a machine language subroutine
Example: DEF USR(0)=&HO0B00 X=USRO(5) will
pass the number 5 to a routine at $0B00

VAL — numeric character string to number conver-
sion Example: ?VAL(TENS$) prints 10

VARPTR — the address of the first data byte of a
variable Example: ?VARPTR(A$) may print 2732

Commands

Commands are mostly intended to be used
when in the ‘READY’ mode of BASIC. How-
ever, all can be coded in a program.

AUTO — automatic line numbering
Example: AUTO 100,10
The first line would be 100, the next 110, etc.

CLEAR — set variables to zero, clear the string area,
optionally reserve space for “RAM files”
Example: CLEAR 1000, 5000 will give 1000 bytes of
string space and a 5000 byte RAM file area

CONT — resume program execution after a break
Example: CONT

DELETE — delete program line(s)
Example: DELETE 10-100 removes lines numbered
from 10 to 100

FILES — list the files on the specified device (E)
Example: FILES “CASO:” will list the files ona
microcassette tape

LIST — display program lines on the screen
Example: LIST 10-100 will display lines numbered
from 10 to 100

LLIST — print program lines on the microprinter
Example: LLIST 10-100 will print lines numbered
from 10 to 100

LOAD — get a BASIC program from tape, disk,
PROM cartridge or RS-232 port, and optionally
RUN it Examples: LOAD “COMM20.BAS”
LOAD “COMO: (37E12)“,R

LOAD? — checks that a cassette file is OK
Example: LOAD? “COMM20.BAS”

LOADM — get a machine code program from tape,
disk or PROM cartridge and optionally execute
it Example: LOADM “TEST.OBJ”
LOADM “PACO:TEST.OBJ“,R

LOGIN — select another program area and optionally
RUN the program found there (E) Example:
LOGIN 5,R

MEMSET — reserve memory for machine-language
programs (E) Example: MEMSET &HB80

MERGE — Retrieve a BASIC program from tape,
disk, RS-232 port or PROM cartridge and combine
its lines with those of the currently logged-in
program (E) Example: MERGE “CAS1:TEST.BAS”

60 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

MON — enter the debugging monitor (E)
Example: MON

NEW — clear the program area and all variables
Example: NEW

PEEK — inspect memory Example: PEEK(&H140)

POINT — determine status (on/off, color) of a point
on the screen (E) Example: POINT(10,20)

RENUM — renumber program lines (E)

Example: RENUM 1000, 220, 100 where 220 is the
first line to renumber, 1000 is the number to giveit,
and 100 is the increment for succeeding lines

RUN — execute a BASIC program after optionally
loading it. Example: RUN “COMM20.BAS”,R
The “R” will keep open any currently open files or
devices

SAVE — copy a BASIC program to tape, disk or RS-
232 port Example: SAVE “COMM20.BAS”,A
The “A” will save it as an ASCII file

SAVEM — copy memory to tape or disk (E)

Example: SAVEM “TEST.MEM*,2900,3200,3100
where the contents of memory locations 2900-3200
will be saved; 3100 is an entry point for later use
with the LOADM command

TITLE — add a program to the HX-20's menu (E)
Example: TITLE “COMMUNICATIONS”

TRON TROFF — display the line numbers of BASIC
statements as those statements are being executed.
Examples: TRON

TROFF

Statements

CLOSE — end operations on a file or device
Example: CLOSE #1

CLS — clear screen Example: CLS

COLOR — (on external TV set) set foreground and
background colors, and the color set (E)
Example: COLOR 3,0,1

COPY — print screen image on the printer (E)
Example: COPY

DATA — store data for access by READ statement
Example: DATA CURRENT(1984),FIRST (1985),
SECOND (1986)

DEFDBL — declare double-precision variables

DEFINT — declare integer variables

DEFSNG — declare single precision variables

DEFSTR — declare string variables
Example: DEFINT A-E, I All variables starting
with the letters A through E and I will be
integer variables

DEFFIL — specify a RAM file record length and
starting displacement (E) Example: 51,200

DEFFN — define a user-written function
Example: DEFFN RAD(DEG)=DEG/57.2958

A=5IN(FNRAD(90))

DEFUSR ,— define up to 10 machine language sub-
routines -Example: DEFUSR(1)=&HOB20

DIM — define a table (array) Example: DIM(40,10)
defines a two-dimensional array

END — end program execution Example: END

ERASE — undefine an array (E)
Example: ERASE A$

ERROR — simulate an error or define your own
program error code Example: ERROR 11

EXEC — call a machine language subroutine at a
specified address (E) Example: EXEC &HE000

FOR. . .NEXT

FOR. . .STEP . . .NEXT — loop control
Example: FOR X=1 TO Y STEP 1:X=X*x:NEXT X

GCLS — clear graphics only (E) Example: GCLS

GET% — retrieve data from a RAM file (E)
Example: GET%R,NAME$, AMOUNT Retrieves
a customer name and purchase amount from the
record number stored in R

GOSUB. . .RETURN — execute a subroutine
Example: GOSUB 1000

GOTO — branch to a specified program line
Example: GOTO 1000

IF. . . THEN
IF. . . THEN. . .ELSE
IF. . .GOTO

IF. . .GOTO. . .ELSE — change program flow based
on the evaluation of an expression Examples: IF
X=Y THEN 150 ELSE . . .

IF TRUE GOTO 200 ELSE

INPUT — enter data into a running program from the
keyboard Example: INPUT “Quit (Y/N”, A$

INPUT# — enter data into a running program from a
file Example: INPUT#1,A$

KEY — assign a character string to a function key (E)
Example: KEY 10, “KEYLIST”

KEY LIST — list the function keys on the screen (E)
Example: KEY LIST

KEY LIST — list the function keys on the printer (E)
Example: KEYLIST

LET — assign a value to a variable
Example: LET A=4 is equivalant to A=4

LINE — draw or erase a line on the screen (E)
Example: LINE(0,10)-(20,20)

LINE input — enter data into a running program
from the keyboard, ignoring delimiters
Example: LINE INPUT “First Address Line: “,A$

LINE INPUT# — enter data into a running program
from a file, ignoring delimiters (E)

Example: LINE INPUT #1,A$%

LOCATE — set the cursor to a particular location on
the virtual screen (E) Example: LOCATE 0,4,1
would put it in the first (Oth) column, on the fifth
line, and make the cursor visible

LOCATES — Shift the LCD window to a new area of
the virtual screen (E) Example: LOCATES 0,4,0
would locate the physical screen at the fifth line
(first column) of the virtual screen and turn off the
cursor

LPRINT

LPRINT USING — write data on the microprinter
Example: M$="\ \" LPRINT USING M$;A$

MID$ — exchange characters within a string with
other characters Example: A$="1984-1987"
MID$(A$,4,1)="5" changes string to “1985-1987"

HX-20 BASIC 61

MOTOR — turn the external cassette drive motor
on/off (E) Example: MOTOR ON

ON ERROR GOTO — specify error-handling
routine(s) Example: ON ERROR GOTO 10000

ON. . .GOSUB

ON. . .GOTO — conditional branch depending on
value of an evaluated expression Example: ON
VAL (A$) GOTO 1000,2000,3000

OPEN — allow I/O to a file or device Example:
OPEN “1”,#1,“COMO:(37E12)”

OPTION BASE — “to declare the minimum value for
array subscripts” (E) Example: OPTION BASE 1

PCOPY — copy a BASIC program into another pro-
gram area (E) Example: PCOPY 4

POKE — move a byte to a specified location in
memory Example: POKE &H0A40,65 will put an
“A” in location $A40

PRESET — erase a dot (E) Example: PRESET (10,15)

PRINT

PRINT USING — display data on the screen
Example: PRINT “HELLO”

PRINT#

PRINT# USING — write data to a file or device
Example: PRINT #1, USING N$;A$

PUT% — store data into a RAM file (E) Example:
PUT%3, ABCD$+TEN$ will put ABCD10 into
record #3.

RANDOMIZE — reset the random number generator
Example: RANDOMIZE RIGHT$(TIME$,1)

READ — input values previously entered in DATA
statements Example: READ
NAMES$, ADDRESS$, AMOUNT

REM — insert comments in a program Example: 100
REM MAIN LOOP is the same as 100 “ MAIN
LOOP

RESTORE — set the READ pointer to a specified
DATA statement Example: RESTORE 2200

RESUME — restart program execution after an error
Examples: RESUME to retry the same statement
RESUME NEXT to restart with the next statement
RESUME 1000 to restart at line 1000

SCREEN — select the LCD or TV screen for graphics
or text output (E) Example: SCREEN 0,1 will put
text on the LCD and color graphics on the TV

SCROLL — set screen movement options (E)
Example: SCROLL 9,0,4,4 would be the fastest
scroll speed, no horizontal scrolling, move 4 spaces
on CTL/arrow, and move 4 lines on SCRN keys

SOUND — produce a tone from the built-in speaker
(E) Example: SOUND 13,10 would display an 880
Hz “A” note for 1 second (10 tenths)

STAT — provide information about the status of
program area(s) (E) Example: STAT ALL

STOP — return to BASIC command level from a
program Example: STOP

SWAP — interchange the values of two variables
(E) Example: SWAP HI$,LO$

WIDTH — set the dimensions of a device (E)
Examples: WIDTH 20,40,3 sets the virtual screen to
20 columns wide, 40 columns high, and provides a

scroll margin of 3 columns WIDTH “LPTO:”,20
will set the microprinter width to 20 columns

WIND — position the microcassette to a specified
location (E) Example: WIND 1000

Variables

DATE$ — current date in MM/DD/YY form
Example: ?’DATE$ may print 11/24/84

DAY — numeric value of the day of the week (1-7) (E)
Example: ?DAY may print 6

ERL — line number of the last program error

ERR — error code of the last program error

General Operators
assignment or equality test

> greater than

< less than

=>, >= greater than or equal
<=, =< less than or equal
<> not equal

Numeric Operators

+ addition
Example: 2 + 3 is 5

- subtraction or negation
Example: 4 — 5 is —1

* multiplication
Example: 4 * 5 is 20
/ division (floating point result)

Example: 10 / 3 is 3.33333

division (integer result)

Example: 10\ 3 is 3

exponentiation

Example: FOUR 3 is 64

MOD modulus (the integer remainder of a division)
(E)
Example: 11 MOD 4 is 3

a

Logical Operators

If the expressions being operated upon are equal
to 0 (false) or —1 (true), then

AND if all expressions are true, then the result is
true

OR if any of the expressions are true, then, the
result is true

NOT reverse the logical value of an expression

XOR if any one expression is true, then the
result is true except that if all expressions
are true then the result is false (E)

IMP if the first expression is true and the
second expression is false, then the result
is false. In all other cases the result is
true (E)

EQV if all expressions are logically alike — all
true or all false — then the result is true,
otherwise the result is false (E)

62 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Examples:
A$ = MI_HII
B$ o IIBY'E “

In the statement:
If A$="HI” and B$="OOPS” THEN. . .
the first expression evaluates to —1 (true), the
second to 0
You can check this by entering;:
PRINT A$ = “HI”
PRINT B$="OO0PS”

In the statement:

IF A AND B THEN. . .
where the values of A or B are not —1 or 0, then
the results of the operation will depend on the
bit configuration of the contents. See p.487 of
the Epson America BASIC Manual for examples.
Note that:

IF A THEN PRINT “OK”
will result in printing OK whenever A is not
equal to 0, not just when it is —1.

The results of operating on various combina-
tions of A and B are shown in the following
truth table.

Table 3.1
A A A A
A B AND OR XOR IMP EQV
B B B
T T T T F T T
T F F T T F F
F T F T T T F
F F F F F T T

Operator precedence

expressions in parentheses ()
exponentiation ()

negation (-)

multiplication, division with floating point result
(*, /) division, integer result (\)
modulus (MOD)

addition, subtraction (+,—)
relational operators (=,<,>,<=.=<,
=>,>=,<>)

NOT

AND

OR

XOR

IMP

EQV

Special characters

Special characters are used in print format-

ting. This varies with the national character set
selected. The following example is for the US

numeric digit

. decimal point

+ print the sign of a number

— print a trailing. minus sign if the number is

negative

fill leading spaces with asterisks

$ put a dollar sign in front of the formatted
number

**$ combines ** and $

p put in commas every third digit

“""" exponential (nnE+nn) format

signifies next character is a literal

% when printed, signifies overflow error

*%

Other special characters

? print

&H hex

&O octal

% integer variable

! single precision variable

double precision variable

E floating point (exponential) constant with
single precision

D exponential constant with double precision

WHAT ARE WE MISSING?

We noted above that Epson HX-20 BASIC adds
to the fundamental Microsoft set of features. But
other Microsoft BASIC machines also have
extended features. If you want to compare HX-
20 BASIC to other computers or if you want to
convert programs written for other computers to
HX-20 BASIC, the following list should be of
help. These are extensions that are either
missing from the HX-20 or are HX-20 features
with different names.

Note While disk drives are defined as de-
vices in the HX-20's operating system, there are
really no disk functions present in HX-20 BASIC:
no random access operations, no sector index-
ing, no renaming files, etc. So, any disk-based
BASIC will have features not present in HX-20
BASIC.

CALL — call a machine language routine and pass
variables to it. The EXEC and USR functions on the
HX-20 can be used to call machine language
routines, but the ability to pass parameters is
limited

CHAIN — call a program and pass variables to it. You
can simulate this by storing the variables in a RAM
file and doing a RUN ‘next-program’,R

COM ON — enable/disable communications inter-

HX-20 BASIC 63

rupts. Interrupt handling is not available from
BASIC on the HX-20

COMMON — common list of variables to pass to a
CHAIN'd program. Use a RAM file instead

CVI — convert a 2-character string to an integer

CVS — convert a 4-character string to a single pre-
cision number

CVD — convert an 8-character string to a double
precision number

DAY$ — obtain alpha day of the week. You can do
this on the HX-20 with a simple table look-up

EDIT — BASIC line editor. Epson’s screen editor is
the replacement, but some uses can’t be duplicated
e.g., having the program change itself

FILES — display files stored in RAM

HIMEM — returns the address of the highest memory
location available. The HX-20 replacement is STAT
ALL, which shows how much memory is left.
Also, a PEEK of locations &H12C-12D will show
the highest address plus 1

INP — input a character from a port. Epson replace-
ment is INPUT#, which allows a string to be read
in from any valid HX-20 port

IPL — run a BASIC program on power up. Epson
replacement is to use keystack command from
monitor

KEY ON/OFF/STOP — enable/disable function key
interrupts. HX-20 function keys don’t cause inter-
rupts

KILL — erase a RAM file. The HX-20 version
(CLEAR) operates on the entire RAM area

LCOPY — same as COPY

LPOS — returns column position of printhead

MAXFILES — returns # of allowable RAM files.
There’s no limit on the HX-20, except the limit of
available memory

MAXRAM — returns highest available RAM file
memory address. HX-20 users will have to keep
track of this themselves

MDM ON/OFF/STOP — enables/disables the ON
MDM interrupt. The HX-20 does not have a built-
in modem

MENU — returns to main menu. On the HX-20, use
EXEC &HD23B or manually hit the MENU button

MKI — convert an integer to a 2-character string

MKS — convert a single precision number to a 4-
character string

MKD — convert a double precision number to an 8-
character string

NAME — renames a RAM file. The HX-20 doesn’t
give names to its RAM files, unfortunately

NULL — set the number of nulls printed after each
line

ONCOM — call subroutine when data is received at
the RS-232 port. The HX-20’s RS-232 port is not
interrupt driven, unfortunately, so the program-
mer must continually execute an LOF function to
accomplish the same thing

ON KEY GOSUB — call subroutine when function
key is depressed

ON MDM GOSUB — call subroutine when data is
received by modem

ON TIME$ GOSUB — call subroutine when clock
reaches a specified time. The Epson has this
feature available hardware-wise via an interrupt,
but it is not implemented in BASIC

OUT — output a character to a port. PRINT# is the
Epson replacement

POWER — set power-off timer

POWER CONT — prevent automatic power down

POWER OFF (RESUME) — turn power off
immediately

PRINT@ — print data at a specified screen position.
Epson requires that the LOCATE command be first
used to set cursor; than the next PRINT statement
will print at that position

RSET — right justify a string within a larger string

RUNM — run a machine language program, as op-
posed to a subroutine

SCREEN — turns on/off screen function key labels.
Epson uses keyboard overlays for function key
descriptors. Those with custom programs are on
their own

SOUND ON/OFF — starts/stops tone when loading
or awaiting carrier

TIMES$ ON/OFF/STOP — enable/disable time
interrupt

WAIT — suspend program execution until a specified
action has occurred at a specified I/O port

WHILE/WEND — Loop through statements as long
as a condition is true '

WRITE — output to the screen or a file. Use PRINT#
on the HX-20

4

USING AND WRITING

BASIC PROGRAMS

This chapter covers:

‘If carpenters built buildings the way program-
mers wrote programs, the first woodpecker to
come along would destroy civilization.’
(Weinberg)

Finding and entering BASIC programs

Tips on entering programs

Tips on converting programs written for other machines

Programming tips

Some BASIC programs and subroutines

Searches
Sorts
Graphics
Finance
Electronics

Sometimes programmers don’t mind ‘re-invent-
ing the wheel’ because they find it fun to
work out their own solutions to a problem. But
if you have something you need to get done,
this approach isn’t for you. Using programs and
subroutines already developed could save you a
considerable amount of time against doing it
over again yourself. If you wanted to build a
house, for instance, you would buy ready-made
glass for the windows rather than trying to make
your own glass.

There are a number of books on the market
that consist of collections of programs and
subroutines that are appropriate for general
business and utility use. One is Simple BASIC
Programs for Business Applications by].R.F.
Alonso (Prentice-Hall, 1981). Another is Sub-
routine Sandwich by Grillo and Robertson (John
Wiley, 1983). The same authors have also put
out a sequel — More Subroutine Sandwich. Of
course, there’s also the Kriya package men-
tioned previously. There are others, but these
are the ones we’ve seen and can recommend.

TIPS ON ENTERING PROGRAMS

Before you start keying in any program from a

listing — especially a long one — think about
typing short-cuts and think about avoiding
typos. Here are a few tricks plus a few things to
look out for:

1. Use the HX-20 screen editor to repeat similar
lines. It's easier — and provides less chance
of error — to edit an existing line than to type
in a new one from scratch. Remember, to get
a new line, all you have to do is type over the
line number of the old one.

2. Set the screen width to 20 and the vertical
height to some large number. This will let
you see the whole line at once.

3. If there are statements that repeat often
throughout the program, assign them to the
PF keys.

BASIC PROGRAM CONVERSION TIPS

Undoubtedly, the most marked difference be-
tween running a program on the HX-20 that has
been written for another machine is the way the
screen has been handled. There are two prob-
lems: graphics and size.

There is no standard implementation for
graphics on computers running Microsoft

USING AND WRITING BASIC PROGRAMS 65

BASIC. This means that any program in which
graphics is an integral part will likely cause you
problems in trying to convert it over to the HX-
20

Not only does the way that the graphics
works vary, but the small size of the HX-20
screen will prevent most graphic displays from
running. We don’t mean to discourage you from
trying to convert programs, but just want to
point out the difficulties.

Text messages — prompts and instructions
for instance — also need to be changed to fit on
the HX-20's screen. But this just takes a little
reformatting and shouldn’t slow you down
much. The assembler found later in this book
was written for the TRS-80 Model I and con-
verted to the HX-20. For the messages, we just
shortened each down to 20 characters and made
use of the HX-20's vertical scrolling ability to
allow the user to see what’s scrolled off the
screen. True, you could use horizontal scrolling
to avoid having to change the message sizes at
all, but we don’t advise that. Most people find it
uncomfortable to read. It was with that fact in
mind that SkiSoft’s SkiWriter package was given
a fixed limit of 20 columns.

Disk programs present only a couple of
problems to the HX-20 prospective program
converter, as long as random access is not done.
A sequential file is a sequential file on any type
of device. But the way in which data is stored by
disk BASICs varies from the way HX-20 BASIC
stores it. Disk files are often made up of fixed
length fields, unlike tape files which are often
purely strings and variables. But everything that
can be written to disk can be written to tape.
Again, take a look at our assembler for a sample
of how to read/write to tape.

Programs that use random access disk repre-
sent a special problem for conversion to tape
use. Typically, disk files are of three types:
sequential, indexed, and relative. The sequential
type we're familiar with. The indexed type
consists of a pointer to a particular record on a
disk. If you had a client file, for instance, and
wanted to access the record for John Smith, your
program would first look in the index. There it
would find a location on the disk where the
information for Mr Smith could be found. It
would then go directly to that place on the disk
and read the data.

Relative files are also random access. But
instead of an index, the key that we want to find
in the file has a number in it that is the relative
sector number (sometimes byte number) into the

file. For instance, most implementations of Forth
number the screens. The eighth screen might be
saved in the eighth disk sector. Or, maybe each
screen is two sectors and so the ninth screen
would be in sector 18. Another example: an
inventory can be set up where there are three
items per sector and part number xxxx-24 would
always be found in sector 8. This saves look-up
time (no index), but costs space — relative files
tend to have a lot of holes in them.

We'’ve explained a little about random access
files as a necessary background for converting
programs that use disk files. The way to do it is
with assembly language subroutines plus the
WIND command. Actually, the best way is to
use the RAX ROM described in Chapter 11,
Software and Systems.

Just think of a microcassette tape as a
diskette. Each record on the tape is equivalent to
a record on a disk.

For indexed files, the index would have the
tape location of the record. For relative files, the
tape location could be computed from the item
description. However, you can’t just spin the tape
down to the appropriate point and read the
information. BASIC doesn’t like to do that. It'll
give you an I/O error if you try to read a block
that’s not the next sequential block in the file.
But the data has been read and if you PEEK into
location $37C (&H37C), the microcassette buffer
area, you'll see it there.

For instance, let’s say you created a tape with:
10 CLEAR 1000

15 A=65

20 OPEN “O”, #1, “CASO:TEST”

30 A$=STRING$(255,A)

40 PRINT#1,A$

50 A=A+1

60 GOTO 30

This just writes out successive records of As, Bs,
Cs, etc. Now WIND back to the starting point
and read it back in with:

100 OPEN “1”,#1,“CASO:TEST”
110 PRINT TAPCNT

120 INPUT #1,A$%

130 GOTO 100

Now we have the starting point for each record.
And so we can replace 110 with:

110 WIND nn

where nn is the tape location of the record we
want. We will get our I/O error on line 120 but if
we look in memory at $37C we’ll see our 255 Cs
or Ds or whatever.

66 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

In the above case we cheated a little by using
a string that occupied a full 256 byte cassette
block (255 characters plus the CR that BASIC
sticks in after each PRINT# statement). If we
had written a smaller string, say 63 characters,
then each physical 256-character block on the
tape would be made up of four 63 byte strings
(with a CR at the end of each record).

Just as with real disk records, it’s easiest if the
data you write fills an entire physical block.
Otherwise, your strings will be broken up —
part in one block and part in another. If we had
wanted to write 99 byte strings, for instance,
only 56 bytes of the third string would have
fitted in the first block, the other 43 bytes would
start off the second block.

Up above we mentioned getting an I/O error.
That error will prevent you from getting a
second record from the file without closing and
re-opening the file first (e.g: ON ERROR. ..
RESUME 1000 . . . 1000 CLOSE . . .
OPEN . . .). Working with machine language
we don’t have that problem, which probably
means that there is some byte you can POKE
somewhere to keep going. (We might have that
information by the time you read this, so drop
us a note.)

If we're going to keep closing and re-opening
the file, we may want just to create a myriad of
little files. Instead of each data record being part
of one large file, we can have each record as its
own file. Just do an OPEN before the PRINT#
and a CLOSE after it. Again, we would keep
track of the value in TAPCNT and use WIND to
spin down to the file (i.e., record) that we
wanted.

Epson America, by the way, doesn’t approve
of this pseudo-random access means of using
the tape. Epson says that a low battery con-
dition, concurrent use of the RS-232 port or any
other condition that produces less than normal
voltage may throw off the tape speed and give
you an erroneous tape counter reading. Our
own experience, using Radio Shack micro-
cassette tapes, is that TAPCNT is none too
reliable. But the solution is straightforward.
Each block on the tape is numbered, and this
number is read into memory at location $379. If
you PEEK this location, you can figure out
where in your file you are. If creating a new file
for each block, give each file a unique name/
number.

ADDITIONAL CONVERSION TIPS

There are some additional things to keep in
mind when converting programs from other
machines to the HX-20.

1. The length of any one string can be no more
than 255 characters.

2. The usable length of the name for a variable is
16 characters.

3. All numeric variables that don’t have explicit
type specifiers are assumed to be single
precision.

4. The <RETURN> key inputs a CHR$(13).

BASIC PROGRAMMING TIPS

Whether you write programs for your own use
or programs for others to use, the following
section should provide some assistance.

What makes a program good? How about:

- it performs its stated function(s);
— it's easy to operate;

— it's easy to learn how to operate;
- it’s easy to modify;

- it executes quickly;

— it uses little memory.

You may have come across the term ‘struc-
tured programming’ in various software publica-
tions. Structured programming refers to a way
of systematically writing a program so that it is
easy to debug and easy for others to understand
the logic flow. We won’t get into all that
structured programming entails, as entire books
have been written on just that subject, but we
will pick up a few good points that we can use
in writing our own programs.

1. The most infamous way to make a program
hard to understand is to use GOTO state-
ments indiscriminately. This results in
‘spaghetti’ code, where the flow of control
passes in, out, around, and all over the
code. Keep the use of GOTOs to a minimum
and always try to branch downward in a
program.

2. Use subroutines. Ideally the first part of the
program should look like:

GOSUB initialization
GOSUB main processing
GOSUB termination

USING AND WRITING BASIC PROGRAMS 67

In the main processing routine, you might
have:

100 FOR A = 0 to 1 STEP 0:
GOSUB read record
IF A=0 THEN GOSUB process record
GOSUB print data '
NEXT A
200 RETURN

In the read-record subroutine, you might
have:

IF NOT EOF(1) THEN
INPUT #1,B$,C$

ELSE A=1

RETURN

The lines above are indented for clarity,
something not easily accomplished (if at all)
on the HX-20's screen. But the idea still
holds. The use of subroutines makes pro-
grams easier to read and also isolates logic-
ally separate sections of code from one
another. The print routine, for instance, is
not dependent on anything that happens in
the read routine. Once we know the print
routine works OK, then we don’t have to
worry about it any more. There will never be
any branches into the middle of it, it won’t
stop working because we changed some-
thing else, etc. Note also that each sub-
routine has one entry point and one return
point.

. Use extended variable names. Early BASICs
only allowed a couple of characters for the
name of a variable, so programs tended to
look cryptic. But the HX-20 will allow up to
16 characters for unique names. Isn’t DAILY-
SALES easier to understand than DSO?
Just look out for using a BASIC reserved
word. You can check the reserved word list
each time you create a variable name, or just
leave out the vowels, that will usually get
you through, e.g.,, MNTHLYSALES instead
of MONTHLYSALES because MON is a
reserved word.

. Use device names rather than specific key-
words for I/O. For instance, write to the
printer with PRINT# rather than LPRINT.
This allows you to change devices within the
program (or outside of it, for debugging) by
just changing the OPEN statements. No
change to. any of the I/O statements is
required.

. Use prompts to explain exactly what input is
requested. Don’t make the operator guess as
to which response you had in mind.

6.

10.

11.

12.

13.

14.

During routines that process for a long time,
print a counter or sound a tone so that the
operator will know the program is still
running and still getting somewhere.
Arrange line numbers into groups, by sub-
routine. Keep similar line numbers for
similar functions, e.g., nn90 could always be
a RETURN.

. Keep processing on errors. The operator

may press the wrong key, an illegal arith-
metic condition may occur —such as a
division by 0 — or a computed point on the
graphics screen may be larger than 0-119,
0-31. None of these conditions should cause
your program to abort. Error-trapping is
particularly important for programs to be
used by computer novices who might not
know what to do when an error occurs. An
alternative is to supply a printed set of
instructions that cover actions to be taken in
different situations.

. Offering the operator a default value can

make the program easier to use. This default
value, the value used by the program when
the operator declines to enter a new value,
can be pre-defined at the start of the
program or can be picked up from the last
operator entry. For instance, the city-state in
a mailing address file can be picked up from
the previous entry if the operator only hits
RETURN when prompted for a new city-
state.

Provide for single-character operator input,
wherever possible, to eliminate the need for
hitting RETURN. But be consistent. Don’t
require the use of RETURN sometimes and
not other times, or the operator will get
frustrated.

Use comments, i.e., REM statements, to
indicate what subroutines do and what
variables are used for.

Lay out text on the screen so that it is easily
readable, e.g., don’t spread single words
over two lines if at all possible.

If the documentation can’t be built right into
the progiam, write two separate sets of
instructions: one for operation, one for
programming. (You'll probably need it your-
self 6 months later when you want to make a
change and can’t recall why you wrote the
code the way you did.)

Don’t require the operator to re-enter data
that the program already has access to or can
figure out. If the program has a list of
possible values, one of which must be

68 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

chosen, it may be better to present the list to
the user and ask that he select one, rather
than requiring him to retype it. If multiple
values may be selected, you can present the
list one at a time and ask for a Y/N
confirmation.

If there are too many entries to list, then
allow the operator to ‘abbreviate to unique-
ness’. That is, if you have part numbers in
an inventory like:

HX-20

QX-10

Coleco Adam

Commodore 64

the operator should only need to enter H to
see the HX-20 entry or COM to see the
Commodore 64 entry. If what the operator
enters is ambiguous, such as CO, then you
can sound the beeper as a signal for him to
enter more characters.

15. Accept input in either upper or lower case.
Not only is it easy to hit accidentally the
CAPS key on the HX-20, but going in and
out of NUM will turn CAPS on even if it was
originally off.

16. Make data files compatible with files used by
other programs that the operator may be
using.

17. Use the same sort of prompts and responses
that are used by other programs the operator
may be using.

18. Use text compression to save space on the
screen. See the Software & Systems chapter
for a discussion of the QuickView tech-
nology.

Dave Smith of the Xerox Palo Alto Research
Center, the developers of the technology that
foreshadowed Apple’s Lisa, says that software
should be ‘familiar, concrete, visual’. Paul
Heckel of Quickview Systems has written an
excellent book on the theory behind writing easy
to use programs — The Elements of Friendly
Software Design (Warner Books, 1984).

EFFICIENCY TIPS

Unfortunately, speed and memory are two
resources we don’t have much of on the HX-20.
 There are a number of ways to make programs
run more quickly and use less memory, but
these come at the expense of readability. Keep
that in mind, if you're going to be making
changes to your program later on, you may not

want to incorporate the following suggestions.

Before getting into how to tighten a BASIC
program, it's worth learning something about
what the program looks like in memory.

If you examined memory where your pro-
gram was stored, you'd find that it looked pretty
much the way you typed it in. There are two
major differences. One is that each program line
is chained to the previous line. That is, the first
line of your program contains the address of the
next program line and so on. This is so the
interpreter can find each line without having to
read the entire program. (Of course, some sort
of indexing scheme would have been faster yet,
but Microsoft BASICs just aren’t done that way.)

The second difference is that all BASIC
reserved words have been ‘tokenized’. That's
what makes them reserved words. Every time
the interpreter sees you type in ‘IF’, for instance,
it stores an 89 in that program line. This saves
both space and time.

Now that we know these two things we can
deduce the following;:

1. Putting the most used subroutines near the
front of the program will speed execution.
Why? Because the interpreter will bounce
down, from the beginning, to find the line
number specified on a GOSUB.

2. To save memory, delete all unnecessary
spaces and remarks. Ouch! If you really do
this, you'll make the program unreadable.
For instance,

IF A = 12 THEN A$ = “CAT” would run
faster as:
IFA=12THENA$="CAT"

We haven’t done that to any of the
programs in this book because we wanted
you to be able to understand them. But. . .
sometimes this type of compression is
necessary. As a matter of fact, we expect
someone eventually to market a program
that does this compression on the HX-20
automatically, as has been marketed for
other computers.

3. Use multiple statements per line. This saves
both space and time. Space, because un-
necessary program’line numbers (and poin-
ters) are not being stored. Time, because the
interpreter won’t spend time looking at
statements that can’t be executed until prior
statements have been executed.

4. Use short variable names. Ugh again! But
it'll save space and a little processing time.
To be used only in emergencies.

10.

11.

12.

13.

USING AND WRITING BASIC PROGRAMS 69

. Use NEXT statements with no variable
specified, e.g.,

NEXT

instead of

NEXT A

Various benchmark tests run on Microsoft
BASICs have found a speed improvement
with operand-less NEXTs.

. Don’t use END statements. They’re not

necessary for program execution and just
take up space.

. Null out unused string constants. If you've

set:

A$="Good morning”

and you don’t need that string any more,
setting:

A$=// “

will save you 12 bytes.

Define the most used variable names first.
The same deal for program lines applies to
variables. The ones defined first are kept in
memory first. If you reference a variable that
was the 18th variable you defined, then the
interpreter will have to check the previous
17 variables to get to the 18th.

. Re-use variabie names. This saves space,

and some time. Each variable takes up
memory, so the fewer variables you have,
the more memory is available for other
things.

ERASE unneeded arrays. You will get back
the entire space allocated to an array if you
get rid of it when you're finished. Often,
BASIC programmers will define their arrays
(and their variables) in the beginning of the
program. We’ve learned from the above that
it makes more sense to define them at the
end. But now we’ve learned that it is even
better not to define an array until you need
it.

In Simple BASIC Programs for Business Applica-
tions, J.R.F. Alonso notes that using vari-
ables instead of constants makes programs
more efficient. By the way, this book is a
collection of often-used BASIC business
programs, very well explained, and with tips
on program efficiency and conversions from
one BASIC to another.

Use flags for often-tested conditions. If, for
instance, you have a variable PRINT$ set to
“YES”, set PRINT = —1 so that you can say:
IF PRINT THEN . ..

rather than

IF PRINT$ = “YES” THEN . . .

This is clearer as well as faster.

In a sequence of tests (IF conditions), test for

1.

2.

6.

the likeliest possibilities first. This cuts down
on the number of IFs the program has to
execute. Even better if the conditions are
mutually exclusive and numeric (or can be
converted to numeric) because then you can
say ON nn GOSUB. . . which saves space as
well as time.

ADDITIONAL HX-20 BASIC TIPS

Most of the tips we’ve mentioned above are
useful on any Microsoft BASIC machine.
Here are some that are HX-20-specific.

Watch the width. Using WIDTH 44,n is a
known bug and can cause problems.
Disable the BREAK key. There are times
when we don’t want the BREAK key hit,
accidentally or on purpose. Perhaps some
critical operation is running, such as writing
data to a cassette. Well, you can make the
BREAK key inoperative with:
POKE 125,4
(This tip courtsey of T.L. Ronson of the HX-
20 Users” Group.)

To re-enable, do:
POKE 125,0
If you set this location ($7D) with MON, then
return to BASIC by typing B.

Location 125 will return to 0 when you go
back to the main menu.

. Return to the Menu. If you want your

program to return automatically to the menu,
such as at the end of execution, code:

EXEC &HD23B

(Tip courtesy of T.L. Ronson of the HX-20
Users’” Group.)

. Define a new DEL key. Don’t like the way the

DEL key works? (It deletes the character to
the right of the cursor instead of the ‘more
natural’ deletion of the character immediately
above the cursor.) Well, you can make a new
DEL key:

KEY 1,CHR$(28)+CHR$(8)+CHR$(18)

This assigns PF Key 1 to a combination of
controi functions that will do the job. (But
note that it doesn’t repeat.) This tip provided
by the HX-20 Users’ Group.

. Entended insert mode. Want to move the

cursor to the left or right but still stay in insert

mode?

KEY3, CHR$(29)+CHR$(18) * Cursor left

KEY4, CHR$(28)+CHR$(18) * Cursor left
This tip provided by the HX-20 Users’

Group

Re-arrange dates. Don’t like the American

70 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

way of printing dates? You can re-arrange the
output of DATE$ with the following:
D$=MID$(DATE$4,3)+LEFT$(DATES$,3)
+RIGHT$(DATES$,2)
This gives you, for instance, 20/08/83 instead
of 08/20/83.
Tip provided by the HX-20 Users’ Group.

7. Produce a random number between 1 and N
R=INT(RND*N)+1

Scrolling v. paging

Just from reading the manual, and without
thinking about it, you’d figure that the best, if
not only, way to display information on the
screen is to let it scroll by. Certainly the easiest
way is to PRINT a string, then PRINT another
string, and so on. If information rolls off the
screen, the operator can always use the SCRN or
cursor keys to view the lines he missed (assum-
ing that you as the programmer have used the
WIDTH statement to create a virtual screen more
than 4 lines long). This is actually what we do
with our mini-assembler program. Another
alternative is to slow down the scroll rate (with
the SCROLL statement) to where a human can
read it.

But there’s another way to do things, which
you might have thought of if you use IBM 3270s
or other terminals that display information a
screen-full at one time. With this technique,
which we’ll call paging, the operator will see
just a small part of our information — then
we wait for him to signal that he’s ready to
view more — and we give him the next page,
and so on. There are three advantages to this
method.

First, information that is presented on the
screen does not move once it's displayed,
whereas scrolled lines that start at the cursor
position will move up the screen as each
additional line is added. This lack of movement
makes the material easier to read.

A second advantage is that the virtual screen
size does not have to be more than 4 lines — a
saving of memory, which can be important in a
16K RAM computer. Additional memory savings
can come from re-using the same strings each
time, then rather than having a separate string
for each. Of course, if you just say PRINT “xxx”
then you’re not using any string space at all,
though you do use memory, of course.

Third, if different ‘pages’ are assigned to
different keys on the keyboard, the operator
can selectively retrieve different sections of

the material, without having to sit through
the beginning lines each time.
Try this:

1000 CLS:F$=A$+SPACE$(20-LEN(A$))
+CHRS$(13)+B$
+SPACE$(20—LEN(B$))+ CHR$(13)
+C$SPACE$(20—LEN(C$))
+CHR$(13)+D$:PRINT F$;

Assign A$, B$, and C$ to any strings. Assign
D$=SPACE$(16)+"“. . .“. Now RUN. A$ prints
on the first line, B$ prints on the second line,
etc. We put the “. . .” in to tell the operator
that there’s more data to come and he should
hit a key to view the next page.

If you add:

400 I$=INKEY$
500 IF I$<> “ “ THEN GOSUB 1000
1100 RETURN

then the operator will execute our print
routine only when he hits a key (any key). In
between prints, i.e., in some other part of the
program, we can change the contents of A$,
B$, and C$.

We can go a step further. We can ‘assign’
certain keys to certain pages. For instance:

500 IF I$=“ “ THEN 400

510 IF I$="1“ THEN A$="First Line”: B$=“Second
Line”:
C$="Third Line”: D$=SPACE$(16)+“. . .“:
GOTO 590

520 IF I$="2“ THEN A$=“Fourth Line”:B$=“Fifth
Line”:
C$="Sixth Line”:D$=SPACE$(16)+“. . .“:
GOTO 590

530 A$="Hello”: B$="Good-bye”:C$="That's
all,”“:D$="Folks”

590 GOSUB 1000

600 GOTO 400

One more thing on this subject — you don’t
need to rewrite the screen every time if most
of the information remains the same. If you
wanted to blank out the third line of the
display, for instance, you could code:

LOCATE 0,2:PRINT SPC(20):
In the more general case, you would code:
LOCATE X,VAL(Y$):PRINT E$;

where Y$ is a number entered from the
keyboard (Y$=INKEY$) or passed from the
main program. E$ can be equal to spaces (to
blank out the selected line). X can be 0 to
replace an entire line or some other number
for only a partial replace.

USING AND WRITING BASIC PROGRAMS 71

This technique is also applicable to graphics.
For instance:

2810 A$="rm"
2020 B$="HH" Fig. 4.1
20308 C$="ti"

Then when we execute our 1000 sub-
routine, a composite shape will be displayed.

Tables of shapes can be built by assigning
each screen line to a string and then assigning
a string to the entire shape. The shape can
then be assigned to a key and recalled with a
keystroke.

We can control this even further: a draw
program could be written that would ask for
the location of each new shape to be placed in
the virtual or physical screen. (Remember:
INKEY$ will not echo back to the screen what
the user types in, so what’s already on the
screen will not be overwritten.)

SOME BASIC SUBROUTINES
AND PROGRAMS

The routines that follow have been written to
satisfy some of the typical business, engineer-
ing, and general needs that you might have.
You can run them as they stand or incorporate
them within your own programs. Or just use
them as sparks for your own ideas. Like
everything else in this book, they may be freely
copied for your own use, but not resold.

String-to-ASCIl conversion

Put the ASCII values of the string WORDS$ into
an array XX.

FOR CTR = 1 TO LEN)WORDS$)
XX(CTR) = ASC(MID$(WORDS$, CTR, 1))
NEXT

Hex conversion to integer

Epson/Microsoft BASIC supplies a means to
convert an integer into a hex value: HEX$. But
there is no means to go the other way.
Surprisingly enough, one of the ROM routines
will do a hex-to-integer conversion. Or we can
use a BASIC subroutine. Here’s a simple way to
take a hex number in a variable A$ (up to 255)
and put its decimal equivalent into variable B:

2000 CB$="0123456789ABCDEF”
2010 B=0
2020 FOR CX=1TO 16

2030 IF MID$(A$,2*LL+1,1)=MID$(CB$,CX,1)
THEN B=(CX-1)*16 ELSE NEXT

2040 FOR CX=1 TO 16

2050 IF MID$(A$,2*LL+2,1)=MID$(CB$,CX,1)
THEN B=(CX-1)+B ELSE NEXT

2060 RETURN

Searching

Locating a particular item out of a set of similar
items is a function found in most applications
that do any data management: inventory, mail-
ing lists, etc.

The most commonly used technique (and the
easiest to code) is the serial search: start at the
beginning and examine each item one by one till
a match is found.

Serial search — unsorted table

This example assumes that our information is in
integer format in an array TBLE, but that it is not
in any particular order.

Comments:
NUM is the number of items in the table
ARG is the element we're looking for
FOUND is set true or false depending on the
result, i.e.,, in the mainline program you can
code:

IF FOUND THEN . . .
FOUND=0

FOR INDX=1 TO NUM

IF ARG=TBLE(INDX)

THEN FOUND=—1 ELSE NEXT
RETURN

Serial search — sorted table

If the items in the table are in order, then our
search will be faster because we can stop as soon
as the next table element to be examined is
higher than our argument. (The mini-assembler
program in this book uses this technique, but
with strings.)

FOUND=0

FOR INDX=1 TO NUM

IF ARG=TBLE(INDX) THEN FOUND=INDX
ELSE IF ARG > TBLE(INDX) THEN NEXT

RETURN

Upon completion, FOUND will be set to the
number of the array element if matched.

Here’s a simple inventory application of this
technique:

TBLE(1)=1001
TBLE(2)=1014
TBLE(3)=1231

72 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

TBLE(4)=2019

TBLE$(1)="BIG ONES”
TBLE$(2)="MEDIUM-Sized Ones”
TBLE$(3)="Little Ones”
TBLE$(4)="tiny ones”

ARG=1014

NUM=4

GOSUB . . . 'SEARCH

IF FOUND THEN PRINT TBLE$(FOUND)
ELSE PRINT “Unknown Item”

(Note Any non-zero value is considered by the
BASIC interpreter to be ‘true’.)

Binary search — sorted table

If execution speed is important, and with the
HX-20 it often is, then a binary search is best.
Instead of starting with the first item, a binary
search starts with the middle item. Once you
know that the argument is higher, for instance,
than the middle item, you can disregard the first
half of the table. Then you check the middle
item in the remaining half, and so on.

1010 LOW=0
1020 HIGH=NUM+1
1030 FOUND=0
1040 IF ARG < TBLE(1) OR ARG > TBLE(NUM) THEN
RETURN
1050 IF HIGH >= LOW THEN HALF=INT((HIGH+
LOW)/2):
IF TBLE(HALF) <> ARG
THEN IF TBLE(HALF) > ARG
THEN HIGH = HALF-1:GOTO 1050
ELSE LOW=HALF+1:GOTO 1050
ELSE FOUND=HALF
ELSE FOUND=HIGH
1060 IF ARG <>TBLE(FOUND) THEN FOUND=0
1070 RETURN

Serial proximity search — sorted table

A different type of search returns not a matching
value, but the range of values into which the
argument fails. This is particularly useful when
you're not sure how to spell the search
argument.

The first example uses numeric (integer)
values, the second works with strings.

For the first example, the data is assumed to
be in TBLE(1) to TBLE(NUM). ARG is the value
to search on. WDTH is the number of table
elements on each side of the argument to return.
NUM is the number of elements in the table.

Sample application:
110 TBLE(1)=11
120 TBLE(2)=20

130 TBLE(3)=32
140 TBLE(4)=45
150 TBLE(5)=70
160 TBLE(6)=120
170 TBLE(7)=140
180 TBLE(8)=300
190 ARG=75
200 WDTH=2
210 NUM=8
220 GOSUB 1000
230 PRINT TBLE(LOW);“—*;TBLE(HIGH)
240 STOP
1000 IF ARG<TBLE(1) THEN LOW=1:HIGH=1:
GOTO 1100
1010 FOR INDX=1 TO NUM
1020 IF ARG>TBLE(NUM) THEN LOW=NUM:
HIGH=NUM:GOTO 1100
1030 IF ARG<=TBLE(INDX) THEN 1060
1040 NEXT INDX
1050 INDX=NUM+1
1060 IF ARG=TBLE(INDX)
THEN HIGH=IND+WDTH ELSE HIGH =
INDX+WDTH-1
1070 LOW=INDX-WDTH
1080 IF HIGH>NUM THEN HIGH=NUM
1090 IF LOW<1 THEN LOW=1
1100 RETURN

110 TBLE$(1)="SMITH"
120 TBLE$(2)="SMITTY"
130 TBLE$(3)="SWARTZ"
140 TBLE$(4)="TELEPHONE"
150 TBLE$(5)="ZENITH"
190 ARG$="SZERCSKI”
200 WDTH=1
210 NUM=5
220 GOSUB 1000
230 PRINT TBLE$(LOW);“—“;TBLE$(HIGH)
240 STOP
1000 IF ARG$<TBLE$(1) THEN
LOW =1:HIGH=1:GOTO 1100
1010 FOR INDX=1 TO NUM
1020 IF ARG$>TBLE$(NUM) THEN
LOW=NUM:HIGH=NUM:GOTO 1100
1030 IF ARG$<=TBLE$(INDX) THEN 1060
1040 NEXT INDX
1050 INDX=NUM+1
1060 IF ARG$=TBLE$(INDX) THEN
HIGH=INDX+WDTH
ELSE HIGH=INDEX+WDTH-1
1070 LOW=INDX-WIDTH
1080 IF HIGH>NUM THEN HIGH=NUM
1090 IF LOW<1 THEN LOW=1
1100 RETURN

Sorts

There are all kinds of ways to sort data into
order. The most popular way is the ‘bubble’
sort, but this method, while simple, is very
slow. An exchange sort is not any more complex

USING AND WRITING BASIC PROGRAMS 73

and is quite a bit faster. According to Basic
Statistical Computing, by Cooke, Craven, and
Clarke (Edward Arnold, 1982), benchmark times
for exchange sorts compare favourably with
other methods of sorting as long as the number
of items is 25 or less. At 100 items, the time
required is about 4 times that of the fastest
method, the ‘quicksort’. At 500 items, the time is
16 : 1.

An exchange sort will take the smallest item
in the list and exchange it with the first item,
and then do the same for the second item, and
so on.

A quicksort would keep breaking the list
down into two groups. Basically, it would find
the midpoint, put all less than that one midpoint
in one group, all greater than or equal to the
midpoint in the other group, then break down
each group again and so forth, until each group
is of a size that could be managed by an
exchange sort.

The following is an example of an exchange
sort. We'll leave it to the reader to write the
quicksort program.

Sample data for an exchange sort:
SMITH, J.

COLLINS, E.

QUIP, G.

FRANK, A.

STORK, Y.

SMITH, U.

BART, C.

Smith, J. and Bart, C. will be exchanged, then
QUIP and FRANK, etc.

Note If sorting names, you should remove any
spaces in the name (use INSTRING$). Or, be
certain that names are always defined the same
way. Otherwise:

SMITH, U. will sort out ahead of SMITH,]J.
because a space is lower in the ASCII sorting
order than a J.

10 ‘ Exchange Sort — ASCII

100 * Program takes data from an array, but can be
converted to take data from RAM, keyboard or
cassette

110 ‘ ITEMSS is the array in which the data has been
stored

120 * NUMITEMS is the number of data items

130 * ITEMNO is data item being processed

140 LOW is the number of the lowest item found in
the remainder of the list, i.e., the one that will
be used in the exchange

150 * SEARCHITEM is the number of the next item to
be looked at in the search process

200 FOR ITEMNO = 1 TO NUMITEMS — 1

210 LOW = ITEMNO

220 FOR SEARCHITEM = ITEMNO + 1 TO
NUMITEMS

230 IF ITEM$(LOW) > ITEMS$(SEARCHITEM)
THEN LOW = SEARCHITEM

240 NEXT SEARCHITEM

250 SWAP ITEMS$(ITEMNO), ITEM$(LOW)

260 NEXT ITEMNO

270 STOP

Titles

Centring a string on a line is an often-used
function for creating titles, e.g., report headings,
graph labels. Here’s an easy 1-liner to do it. (If
you're going to a printer, replace each 20 in the
program with the width of the print line, e.g., 24
for the microprinter, 80 for an MX-80.)

500 TITL$=SPACES$(INT(20— LEN(X$))/2)
+X$+SPACE$(INT(20— LEN(X$))/2)

Graphics

Find the greatest common divisor among a
group of numbers

In doing bar graphs, you might prefer the
divisions to come at integer intervals. Let's say
your data looks like this:

#1 = 117
#2 = 234
#3 = 252
#4 = 81

Each division could be 10, for instance — but
then you won’t be able to tell what the actual
amounts are just by looking at the graph. But if
we knew that some other number, 9 for
instance, went evenly into each amount — we
could make the divisions multiples of 9. The
following subroutine will find this greatest
common divisor.

As before, the data is assumed to be in an
array TBLE, starting with item #1. NUM is the

number of items. GCD will- be the greatest

common divisor, the number we’re looking for.

510 N1=TBLE(1) 'Initialization

520 GCD=N1

530 FOR I=2 TO NUM 'Main Loop

540 N2=TBLE(])

550 IF N1=0 or N2=0 THEN GCD=0:GOTO 580
'Test for a 0 entry

560 QUOTIENT=INT (N1/N2):
RMDR=N1-2*QUOTIENT: IF RMDR<>0 THEN
N1=N2:N2=RMDR:GOTO 560 ELSE GCD=N2

570 NEXT I

580 RETURN

74 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Line graph

The values to be plotted are in two arrays: X and
Y. NUM is the number of pairs of values. The
data must be normalized first, to enable it to fit
on the screen.

CLS

YLOW=Y(1)

YHIGH=Y(1)

FOR INDX=2 TO NUM

IF Y(INDX) < YLOW THEN YLOW=Y(INDX)
IF Y(INDX) > YHIGH THEN YHIGH = Y(INDX)
NEXT INDX

SCALE=YHIGH-YLOW

IF SCALE=0 THEN SCALE=1

PSET (X(1),Y(1))

FOR INDX=2 TO NUM

LINE-(X(INDX), Y(INDX)), PSET

NEXT INDX

RETURN

To make this line graph into a scatter plot, just
change the third line from the bottom to:

PSET(X(INDX), Y(INDX)

Data Normalization

The following routine will keep your data
proportional — a process called normalization.

MAX = top end (e.g. 0-120) for the values

2000 SUM=0

2010 FOR INDX=1 TO NUM

2020 SUM = SUM + TBLE)INDX)

2030 NEXT INDX

2040 FOR INDX=1 TO NUM

2050 TBLE(INDX)=INT(TBLE(INDX)/SUM*MAX)
2060 NEXT INDX

Bar chart
To create a bar chart after normalizing the data.

Input is TBLE

NUM = # of values (1-9)

1000 CLS

1005 IF NUM=<3 THEN SPAC=8 ELSE IF NUM=4
THEN SPAC=6 ELSE IF NUM=5 THEN
SPAC=5 ELSE IF NUM=6 THEN SPAC=4 ELSE
IF NUM=7 THEN SPAC=4 ELSE IF NUM>=8§
THEN SPAC=3

1010 FOR X=4 TO 100 STEP 5

1020 PSET (X,31)

1030 NEXT

1040 FOR X=9 TO 100 STEP 10

1050 PSET (X,30)

1055 NEXT

1060 FOR X=4 TO 100 STEP 5

1070 PSET (X,0)

1080 NEXT

1090 FOR X=9 TO 100 STEP 10

1100 PSET (X, 1)

1110 NEXT

1120 FOR INDX=1 TO NUM

1130 LINE (0,INDX*SPAC)~(TBLE(INDX)-1,
INDX*SPAC),PSET

1140 NEXT

1150 RETURN

Graphics demonstration program

This is a cute little demonstration of the HX-20's
graphics capability. You'll understand why it’s
called ‘New York’ after you see it run. Original
version courtesy of the HX-20 Users” Group.

10 TITLE “NEW YORK”

20 RANDOMIZE VAL (RIGHT$(TIMES,2))

40 CLS

50 LINE(0.31)~(120,31),PSET:LINE(0,30)-
(120,30),PSET

60 FOR A=0 TO 120

70 B=20+(INT(RND*24))

80 FOR C=B TO 32)

90 PSET(A,C):PSET(A+1,C):PSET(A+2,C)

100 NEXTC

110 NEXTA

120 G=INT (RND*35)+1

130 IF G<34 THEN 120

140 D=INT (RND*120)+1

150 H=INT(RND*20)+1

160 IF H=2 THEN 230

170 FOR E=0 TO 32

180 PSET (D,E)

190 PRESET (D,E-2)

200 IF E=31 THEN SOUND 15,1

210 NEXT E

220 GOTO 120

230 FOR E=0 to 32

240 line (D,E-2)-(D+2,E-2),PSET

250 LINE(D,E-4)-(D+2,E-4),PRESET

260 IF E=31 THEN SOUND, 3,4

270 NEXTE

280 LINE(D,E-2)~(D+2,E-2)PRESET

290 LINE(D,29;-(D+2,29),PRESET

300 LINE(D,31)-D+2,31),PSET

310 LINE(D,30)-D+2,30),PRESET

320 GOTO 120

Graphic character definition

Epson’s documentation discusses how to assign
graphics characters to the numeric keys. But the
HX-20 Users’ Group finds the example limited
and offers the following:

10 MEMSET &HO0AS80

20 POKE & HO11E,&HO0A ’'Give starting address
30 POKE &HO011F,&H40 ' of character list

40 POKE &HO0A40,92 * Design an omega pattern
50 POKE &HO0A41,98

USING AND WRITING BASIC PROGRAMS 75

60 POKE &H0A42,2
70 POKE &HO0A43,98
80 POKE &HO0A44,92
90 POKE &HO0A45,0

Each of the 6 bytes that defines a character
describes a single vertical column. For instance,
decimal 92 is hex 5C or binary 0101 1100. This
means that the uppermost dot in this column is
off, the next dot is on, the next off, the next on,
the next on, the next off, the next off. If you
want to keep a 1-dot space around your
character, make sure that, as in the above
example, the lowest bit in each column is off and
also that the last byte has each bit turned off.

Note that the program need only be run on a
cold start (i.e., CTL/@) or when changing
MEMSET. The data can also be typed in via
MON, of course.

See Chapter 11, Software and Systems, for
information on programs from King Software
and Kuma Computers that make character
definition easier.

Alarm clock program

This program was provided by the HX-20 Users’
Group. You're asked for the time you want to
set (use double quotes around the time) and a
short tune will play when that time is reached.
The clock continues to display.

10 TITLE “ALARM”
20 CLS:PRINT “Time now is “;TIME:PRINT “ Input
time wanted”:PRINT “ e.g ' ' '*;
TIMES$;” 7 “:INPUT “ “;AA$
30 DISPLAY$=TIME$:CLS:PRINTTIME$
40 IF DISPLAYS$=AA$ THEN GOSUB 70
50 IF DISPLAYS$=TIME$ THEN 50
60 GOTO 30
70 FOR I=1 to 16
80 READ A,D
90 SOUND A,D
100 DATA 2,3,4,5,5,6,7,8,1,2,4,7,1,2,8,5,9,2,4,3,5,4,2,
1,6,5,7,5,2,8,3,9,2,3 ’ don’t leave any blanks
110 NEXT I
120 RETURN

STATISTICS/FINANCE
This routine will find an average:

SUM=0

FOR INDX=1 TO NUM
SUM=SUM-+TBLE(INDX)
NEXT INDX
AVG=SUM/NUM

A weighted moving average is useful for stock

tracking, because it assigns a higher priority to
the more recent readings.

10’ Compute weighted moving averages
120 PRINT “WEIGHTED M.A.s”

200 MA=0

210 INPUT “Number of readings:”; N
220 FORA =1TON

230 INPUT “DATA: “I

240 MA=MA +(I*A)

250 NEXT

260 PRINT N;“day weighted”

270 PRINT “moving average is:”

280 FOR A=1TO N

290 B=B+A

295 NEXT

300 PRINT MA/B

A smoothed exponential mean is a shortcut to
computing a weighted moving average. It's
probably most handy when you don’t have all
the previous readings. The first computation
only requires one reading, the current day’s and
the previous day’s.

10’ Program to compute smoothed exponential
mean

140 INPUT “Smoothing constant: “;S

150 INPUT “Previous SEM “;P

160 INPUT “Current data “;C

170 SEM=S+(C—-P)+P

180 PRINT “New SEM is: “;SEM

The smoothing constant referred to above can be
computed by dividing the length of the term
into 2 and adding 1. For instance, the smoothing
constant for a 10 day average would be 2/(10+1)
or 0.18. Reference: Winning Stock Selection
Systems by Gerald Appel (Boardroom Reports,
1979).

Reduction loans

Loans in which each payment includes part of
the principal (as opposed to ‘balloon’ loans) are
quite common.

For this routine, enter a number for all known
amounts and a ‘? for the value you wish to
determine: payment amount, amount that can
be borrowed, number of payments.

10’ General reduction loan formula

20’ Author: Eric Balkan

30’ P=AxI/(1-(1+I)"—-N))

40’ P=periodic payment

50’ A=amount borrowed

60’ I=interest in decimal (e.g. .10 rather than 10%)
70" N=number of payments

80’ E.g., 30 yr mortgage loan for $100,000 at 12.5%,
90’ solved for P:

110" P = 100000 * ((1—(1+.125)" —360)/.125

76

120
130
210
220

240
250

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

PRINT “GENERAL LOAN PROGRAM*
PRINT “Enter number or ?“

LINEINPUT “Payment Amount”; P$

IF P$="?" THEN FP=1 ELSE S=INSTR(P$,”,”):
IF S=0 THEN P=VAL(P$)

ELSE P=VAL(LEFT$(P$,5—1)+MID$(P$,5+1)
LINEINPUT “Amount Borrowed? “;A$

IF A$="?" THEN FA=1 ELSE
S=INSTR(AS$,”,”):IF S=0 THEN A=VAL(A$)
ELSE A=VAL(LEFT$(A$,5—1)+MID$(A$,5+1))
LINEINPUT “# of Payments? “;N$

IF N$="?" THEN ZN=1 ELSE N=VAL(N$)
LININPUT “Interest Rate? “;I$

IF I$="?" THEN PRINT “NOT AVAILABLE":
GOTO 430

IF RIGHT$(I$,1)="%"

THEN I$=LEFT$(I$,LEN(I$)—1)

I=VAL (I$)/1200

IF FP THEN P=A*(l/(1-(1+I)[—-N):

PRINT “PAYMENT: “;P:GOTO 430

IF FA THEN A=P*(1-(1+D)[-N)/):

PRINT “AMOUNT: “;A:GOTO 430

N=LOG (1-I*A/P)

N=-N/LOG(1+])

PRINT “# OF PAYMENTS: “;INT(N)

END

ELECTRONICS

Decibel/Power/Voltage conversion program

This program converts decibels to voltage
(current)* and power ratios and vice versa.
These parameters are used when measuring
circuit gain or attenuation.

*Note Voltage gain = current gain

107
20"
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

210

“DB Conversion” by Mark Weber
Version 1.2, 10/21/83

CLS
PRINT// * * %u
PRINT” Decibel”

PRINT” Voltage/Power Gain”

PRINT” Conversion Program®;

FOR T=0 TO 800:NEXT

CLS

PRINT ‘Convert from:”

LOCATE 4,2

PRINT “(Choose One)”

FOR T=0 TO 400:NEXT

CLS

PRINT “1) Voltage to dB”

PRINT “2) Power to dB”

PRINT “3) dB to Voltage”

PRINT “4) dB to Power”;

A$=INKEY$

IF A$="1" THEN B$="volts”:C$="Voltage":
GOTO 250

IF A$="2" THEN B$="watts”:C$="Power":

220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

GOTO 250

IF A$="3" THEN C$="Voltage”:GOTO 580
IF A$="4" THEN C$="Power”“:GOTO 580
GOTO 190

CLS

INPUT “Initial value”;VI

IF VI <= 0 THEN 250

CLS

INPUT “Final value”;VF

IF VF <= 0 THEN 280
DB=20*LOG(VF/VI*.4342943

CLS

PRINT “Do you want a”

PRINT “printout?”

PRINT “ 1) Yes”
PRINT “ 2) No*;
D$=INKEY$

IF D$="1” THEN E=1:GOTO 410

IF D$="2” THEN E=0:GOTO 410

GOTO 370

CLS

IF INKEY$="1"THEN 140

PRINT “Initial value:”

LOCATE 6,1:PRINT VI:PRINT B$
PRINT”Final value:”

IF VF >= 10000 THEN H=4 ELSE H=5
LOCATE H,3:PRINT VF;:PRINT B$;

IF D=1 THEN COPY

FOR T=0 TO 400:NEXT

CLS

IF INKEY$="1” THEN 140

PRINT C$ + “ Gain:”

LOCATE 6,1:PRINT DB;:PRINT “DB”

IF D$="2” THEN LOCATE, 1,3: PRINT “(” +
CHR$(34) + “1” + CHR$(34) + “ to restart)”;
IF D$="1“ THEN COPY: GOTO 140

FOR T=0 TO 400: NEXT

GOTO 410

CLS

INPUT “Enter dB value:”, DB

IF A$="3" THEN RATIO=EXP(DB/8.685889)
IF A$="4" THEN RATIO=EXP(DB/4.3429445)
CLS

PRINT “Do you want a”

PRINT “printout?”

PRINT “ 1) Yes”
PRINT “ 2) No*;
D$=INKEY$

IF D$="1" THEN E=1:GOTO 710

IF D$="2“ THEN E=0:GOTO 710
GOTO 670

CLS

IF INKEY$="1” THEN 140

PRINT C$ + “ Gain:”
LOCATE7,1:PRINT DB;:PRINT “dB“
PRINT C$ + “Ratio:”

IF RATIO < 1 THEN RATIO = 1/RATIO
IF RATIO> 1E+6 THEN H=2 ELSE H=6
IF DB < 0 THEN LOCATE H,3: PRINT
“1:”;:PRINT RATIO;

USING AND WRITING BASIC PROGRAMS

790 IF DB >= 0 THEN LOCATE H,3:PRINT 420 IF XC <= 0 THEN 380
RATIO;:PRINT*:1%; 430 C=1/(6.28318*F*XC)
800 IF D$="1 THEN COPY:GOTO 140 440 W$="farads":CA=C
810 FOR T=0 TO 500 :NEXT 450 IF C < .1 THEN CA=C*1E6:W$="uf"
820 CLS 460 IF C < 1E-9 THEN CA=C*1E12:W$="pf"
830 IF INKEY$="1“ THEN 140 470 GOSUB 3000
840 LOCATE 1,2:PRINT “(“ + CHR$(34) + “1” 500 XCA=XC:WC$="ohms"
+ CHR$(34) + “ to restart)”; 510 IF XC>= 1E3 THEN
850 FOR T=0 TO 300:NEXT T XCA=XC/1E3:WC$="kilohms"
860 GOTO 710 520 IF XC >= 1E6 THEN

XCA=XC/1E6:WC$="megohms”
530 CLS:SCROLL 9,0,10,4
540 IF INKEY$="1“ THEN 130
This program simulates a standard reactance 550 PRINT “The capacitance is:”
chart. It will calculate the capacitance, capacitive =~ 960 LOCATE 2,2:PRINT CA;W$
reactance, inductance or inductive reactance, at ggg 88‘“5:’% 3(1)33
a given frequency, given the other correspond-

. 1 IP |<|§ =II ’“"
ing paramenter. These calculations are used to gzg IIFRINT ,,}{;ir alfr(;l;lljffc; 3;0f:”

Reactance Chart Program

design frequency-sensitive circuits. 630 LOCATE 3,1:PRINT FA;WF$
10 CLS 640 SCROLL 9,0:PRINT “and cap. react. of:"”
20 ' “Reactance Chart” by Mark Weber 650 LOCATF ,?'3: PRINT XCA;WC$;
30 ’ Version 1.1 — 10/21/83 660 IF D$="1” THEN COPY:GOTO 130
40 PRINT “ * ok ku 680 FOR T=0 TO 400:NEXT
50 PRINT “ Reactance Chart” ggg SL(.)E;TO 530
o INNT . Trogem 710 PRINT “Enter the inductive”
80 FOR T=0 to 500; NEXT 720 PRINT “reactance in ohms.”
90 CLS 730 INPUT XL
100 PRINT “What is the unknown?” 740 IF_XL <=0 TI;IEN 700
110 LOCATE 4,2:PRINT “(Choose One)” 750 L=XL/(6.28318"F)
120 FOR T=0 to 300:NEXT 760 W$="henrys"LA=L .
130 CLS 770 IF L < 1 THEN LA=L*1E3:W$="mH
140 PRINT ”1) Capacitance” 780 IF L < 1E-3 THEN LA=L*1E6:W$=MUH”
150 PRINT “2) Inductance” 720 GOSUB 3000)
160 PRINT “3) Cap. Reactance” 820 XLA=XL:WL$="ohms
170 PRINT “4) Ind. Reactance” 830 IF XL >= 1E3 THEN ;
180 A$=INKEY$ XLA=XL/1E3:WL$="kilohms
190 ON VAL (A$) GOTO 210,210,210,210 840 IF XL >= 1E6 THEN)
200 GOTO 180 XLA=XL/1E6-WL$="megohms
210 CLS:SCROLL 9,0 850 CLS:SCROLL 9,0
220 PRINT “Do you want a” 860 IF INKEY$="1" THEN 130
230 PRINT ”Printout?” 870 PRINT ”The inductance iS:”
250 PRINT “ 2) No” 890 GOSUB 3100
260 D$=INKEY$ 900 GOSUB 2000
270 IF D$="1“ OR D$="2“ THEN GOTO 300 930 IF INK[::,Y$=”1 THEN 130)
290 GOTO 260 940 PRINT “For a frequency of:
300 CLS 950 LOCATE 3,1:PRINT FA;WF$
310 PRINT “Enter the frequencyu 960 SCROLL 9,0.PRINT “and ind. react. of:”
320 PRINT “in Hertz (cycles)” 970 LOCATE 2,3:PRINT XLA;WLS$;
330 PRINT “per second).” 980 IF D$="1 THEN COPY:GOTO 130
340 INPUTF 1000 FOR T=0 to 400:NEXT
350 IF F<=0 THEN GOTO 300 1010 gOTO 850
360 ON VAL (A$) GOTO 380,700,1020,1350 1020 CLS)
370 GOTO 370- 1030 PRINT “Enter the capa-
380 CLS 1040 PRINT “citance in farads.”
" N 1050 INPUT C
390 PRINT “Enter the capacitive
400 PRINT “reactance in ohms.” 1060 IF C <= 0 THEN 1020

410 INPUT XC 1070 XC = 1/(6.28318*F*C)

78 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

1080 W$="ohms":XCA=XC

1090 IF XC >= 1E3 THEN
XCA=XC/1E3:W$="kilohms”

1100 IF XC>= 1E6 THEN
XCA=XC/1E6:W$="megohms"

1110 FA=F:WF$="Hz"

1120 IF F>= 1E3 THEN FA=F/1E3:WF$="kHz"

1130 IF F >= 1E6 THEN FA=F/1E6:WF$="MHz"

1140 CA=C:WC$="farads”

1150 IF C < .1 THEN CA=C*1E6:WC$="uf"

1160 IF C< 1E-9 THEN CA=C*1E12:WC$="pf"

1170 CLS:SCROLL 9,0

1180 IF INKEY$=1“ THEN 130

1190 PRINT “The capacitive”

1200 PRINT “reactance is :

1210 PRINT XCA;W$

1220 GOSUB 3100

1230 GOSUB 2000

1260 IF INKEY$="1" THEN 130

1270 PRINT “For a frequency of:”

1280 LOCATE 3,1:PRINT FA;WF$

1290 SCROLL 9,0:PRINT “and capacitance of:”

1300 LOCATE 2,3:PRINT CA;WCS$;

1310 IF D$="1“ THEN COPY:GOTO 130

1330 FOR T=0 TO 400 :NEXT

1340 GOTO 1170

1350 CLS

1360 PRINT “Enter the induc-“

1370 PRINT “ance in henrys.”

1380 INPUT L

1390 IF L<=0 THEN 1350

1400 XL=6.28318*F*L

1410 W$="ohms":XLA=XL

1420 IF XL>=1E3 THEN XLA=XL/1E3:W$="kilohms”

1430 IF XL>=1E6 THEN
XLA=XL/1E6:W$="megohms”

1440 GOSUB 3000

1470 LA=L:WL$="henrys”

1480 IF L < 1 THEN LA=L*1E3:WF$="mH"

1490 IF L < 1E-3 THEN LA=L*1E6:WL$="uH"

1500 CLS:SCROLL 9,0

Low-pass filter

1510 IF INKEY$="1“ THEN 130

1520 PRINT “The inductive”

1530 PRINT “reactance is:”

1540 PRINT XLA:W$

1550 GOSUB 3100

1560 GOSUB 2000

1590 IF INKEY$="1“ THEN 130

1600 PRINT “For a frequency of:”

1610 LOCATE 3,1:PRINT FA;WF$

1620 SCROLL 9,0:PRINT “and inductance of:”

1630 LOCATE 2,3:PRINT LA;WLS;

1640 IF D$=“1“ THEN COPY:GOTO 130

1660 FOR T=0 TO 400 :NEXT

1660 GOTO 1500

2000 IF D$="1” THEN COPY

2010 FOR T=0 TO 600:NEXT

2020 CLS:SCROLL 9.0

2090 RETURN

3000 FA=F:-WF$="Hz"

3010 IF F >= 1E3 THEN FA=F/1E3:WF$="kHz"

3020 IF F >= 1E6 THEN FA=F/1E6:WF$=“MHz"

3090 RETURN

3100 IF D$="2“ THEN LOCATE 1,3:PRINT “(* +
CHR$%(34) + “1” + CHR$(34) + “ to restart)”;

3190 RETURN

Filter design program

This program is a design aid for active multiple
feedback type filters. The multiple feedback filter
has several advantages over other types of filters
and is used extensively in audio applications.

10 ' “Multiple Feedback Filter Design” by Mark

Weber
20 ‘ Version 1.0 — Oct 31, 1983
30 CLS
40 PRINT “ * ok wu
50 PRINT “ Filter Design”

Program”
70 PRINT “ ***;

High-pass filter

Qut
Lo

* Optional, used
for minimum
dc offset

Fig. 4.2 Filters

USING AND WRITING BASIC PROGRAMS 79

FOR T=0 TO 500:NEXT T
CLS

PRINT“Type of filter:”
PRINT“ 1) Low-pass”
PRINT“ 2) High-pass”
PRINT” 3) Band-pass”;
A$=INKEY$

IF A$="1" THEN 190
IF A$="2" THEN 510
IF A$="3" THEN 820
GOTO 140

GOSUB 1330
F$="high”“:GOSUB 1380
GOSUB 1430

GOSUB 1530

GOSUB 1590
C2=C1/(4*Q" 2+(H+1))
R2=1/(C12.5664*F*Q*C2)
R1=R2/H

R3=R2/(H+1)
R4=(R1*R2)/(R1+R2)+R3

CA=C1:GOSUB 1640:C1=CA:WC1$=WC$
CA=C2:GOSUB 1640:C2=CA:WC2$=WC$

GOSUB 1690

IF P$="1" THEN PRINT:PRINT:PRINT:

PRINT“Low Pass Filter:“;:COPY:CLS

IF P$="1" THEN PRINT “Gain="H;" Q=",Q
IF P$="1" THEN PRINT “Freq=;F;"Hz"

PRINT“C1=";CL,WCI$
PRINT“C2=";C2;WC2$

IF P$="2" THEN GOSUB 1880
IF P$=“1“ THEN COPY

FOR T=0 TO 500:NEXT T
GOSUB 1690
PRINT“R1=";INT(R1);“ochms”
PRINT“R2=";INT(R2);“ohms"“
PRINT“R3=";INT(R3);“ohms"
PRINT“R4=";INT(R4);“ohms”
IF P$="1“ THEN COPY:GOTO 480
FOR T=0 TO 500:NEXT T
GOTO 310

GOSUB 1840

GOSUB 1700

GOTO 490

GOSUB 1330
F$="low”:GOSUB 1380
GOSUB 1430

GOSUB 1530

GOSUB 1590

C2=CI/H

C3=C1
R1=1/(6.2832+F+Q+C1+(2*H+1))
R2=(Q+(2*H +1))/(6.28318+F*C1)

CA=C1:GOSUB 1640:C1=CA:WC1$=WC$
CA=C2:GOSUB 1640:C2=CA:WC2$=WC$

GOSUB 1740

IF P$="1" THEN PRINT:PRINT:PRINT:

PRINT“High Pass Filter:“;:COPY:CLS

IF P$="1“ THEN PRINT “Gain=";H;" Q=",Q
IF P$=“1“ THEN PRINT “Freq=";F;"Hz"

660 PRINT “C1=";CL;WC1$

670 PRINT “C2=";C2;WC2$;

680 IF P$="2" THEN GOSUB 1880

690 IF P$="1“” THEN COPY

700 FOR T=0 TO 500:NEXT T

710 GOSUB 1740

720 PRINT“C3=";C1;WC1$

730 PRINT“R1=“;INT(R1);“ohms”

740 PRINT“R2="“;INT(R2);“ohms”

750 PRINT“R3=";INT(R2);“ohms”

760 IF P$="1“ THEN COPY:GOTO 790

770 FOR T=0 TO 500: NEXT T

780 GOTO 620

790 GOSUB 1840

800 GOSUB 1750

810 GOTO 800

820 GOSUB 1330

830 CLS

840 PRINT“Which do you want“:PRINT” to
specify:“

850 PRINT“1) -3dB freq pts”

860 PRINT“2) Q & center freq”;

870 A$=INKEY$

880 IF A$="1" THEN 990

890 IF A$="2" THEN 910

900 GOTO 870

910 GOSUB 1480

920 IF (2*Q"2-H<=0 THEN SOUND 10,4:CLS:
PRINT“Q too small. Must“:PRINT“be greater
than”:PRINT SQR(H/2):FOR T=0 TO 700:NEXT
T: GOTO 910

930 IF Q>10 THEN CLS:PRINT“Value of Q too”:
PRINT“large, must be 10“:PRINT“or less.”:FOR
T= 0 TO 600: NEXT T:GOTO 910

940 CLS

950 PRINT“What is the”

960 PRINT“center frequency,”:PRINT”in Hertz.”

970 INPUT FC

980 IF FC<=0 THEN SOUND 10,4:GOTO 940 ELSE
1060

990 F$="high”:GOSUB 1380:FH=F

1000 F$="low”:GOSUB 1380:FL=F

1010 IF(FH-FL)<=0 THEN CLS:SOUND 10,4:
PRINT“YOU HAVE JUST": '
PRINT“DESIGNED A NO-PASS“:
PRINT“FILTER. Try again.”:FOR T=0 TO 700::
NEXT T:GOTO 990

1020 FC=(FH-FL)/2+FL

1030 Q=FC/(FH-FL)

1040 IF Q>10 THEN CLS:SOUND 10,4:
PRINT CHR$(34)+“Q"”+CHR$(34)+“OUT OF
RANGE OF“:PRINT“THIS FILTER.”:PRINT”
Try again.”:FDR T=0 TO 700:NEXT T:GOTO 990

1050 IF (2+Q"2-H)<=0 THEN SOUND 10,4:CLS:
PRINT“Bandwidth too large.”:PRINT“Must be
less than”:PRINT FC/SQR(H/2);”Hz":FOR T=0
TO 700:NEXT T:GOTO 990

1060 GOSUB 1530

1070 GOSUB 1590

1080 R1=Q/H*6.2832*FC*C1)

80 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

1090 R2=Q/((2+Q " 2-H)*6.2832+FC*C1)

1100 R3=Q/C1+3.1416+FC)

1110 CA=C1:GOSUB 1640:C1=CA:WC1$=WC$

1120 GOSUB 1790

1130 IF P$="1” THEN PRINT:PRINT:PRINT:
PRINT“Bandpass Filter:“;:COPY:CLS

1140 IF P$="1” THEN PRINT “Gain=;H;” Q=";Q

1150 IF P$="1" AND A$="1" THEN PRINT
“Fecent=";FC;"BW=";FC/Q

1160 IF P$="1” AND A$="2" THEN PRINT
FL=";FC-FC/(2*Q);"FH=";FC+FC/(2*Q);"Hz"

1170 PRINT “C1=";C1;WC1$

1180 PRINT “C2=";C1;WC1$;

1190 IF P$="2" THEN GOSUB 1880

1200 IF P$="1" THEN COPY

1210 FOR T=0 TO 600:NEXT T

1220 GOSUB 1790

1230 PRINT“R1=";INT(R1);“ohms”

1240 PRINT“R2=";INT(R2);”ohms”

1250 PRINT“R3=";INT(R3);“ohms”

1260 PRINT“R4=";INT(R3);“ohms”;

1270 IF P$="“1” THEN COPY:GOTO 1300

1280 FOR T=0 TO 600:NEXT T

1290 GOTO 1120

1300 GOSUB 1840

1310 GOSUB 1800

1320 GOTO 1310

1330 CLS

1340 PRINT“What value of”:PRINT“passband gain”:

PRINT“would you like”

1350 INPUT H

1360 IF H<=0 THEN SOUND 10,4:GOTO 1330

1370 RETURN

1380 CLS

1390 PRINT”Enter the “;F$:PRINT“cutoff
frequency,”:PRINT” in hertz.”

1400 INPUT F

1410 IF F<=0 THEN SOUND 10,4:GOTO 1380

1420 RETURN

1430 CLS

1440 PRINT“Would you like
a”:PRINT”maximally-flat”:PRINT“Butterworth
filter?”

1450 PRINT”1) Yes. 2) No.”;

1460 A$=INKEY$

1470 IF A$="1" THEN Q=SQR(2)/2:RETURN

1480 IF A$="2" THEN CLS ELSE 1460

1490 PRINT“What value of
“+CHR$(34) +“Q"+ CHR$(34):PRINT “would
you like”

1500 INPUT Q

1510 IF Q<=0 THEN SOUND 10,4:GOTO 1480

1520 RETURN

1530 CLS

1540 PRINT “Do you want a”:PRINT “printout?”

1550 PRINT “ 1) Yes”

1560 PRINT “ 2) No*;

1570 P$=INKEY$

1580 IF P$="1" OR P$="2“ THEN RETURN
ELSE 1570

1590 CLS

1600 PRINT “Pick a likely value”:PRINT“for C1, in
farads.”

1610 INPUT C1

1620 IF C1<=0 THEN SOUND 10,4:GOTO 1590

1630 RETURN

1640 CB=CA:WC$="farads”

1650 IF CA<.1 THEN CB=CA*1E6:WC$="uf"

1660 IF CA<1E-9 THEN CB=CA*1E12:WC$="pf”

1670 CA=CB

1680 RETURN

1690 CLS

1700 D$=INKEY$

1710 IF D$="1“ THEN 230

1720 IF D$="2" THEN 90

1730 RETURN

1740 CLS

1750 D$=INKEY$

1760 IF D$="1“ THEN 550

1770 IF D$="2" THEN 90

1780 RETURN

1790 CLS

1800 D$=INKEY$

1810 IF D$="1“ THEN 1070

1820 IF D$="2" THEN 90

1830 RETURN

1840 CLS

1850 PRINT CHR$(34)+“1”“+CHR$(34)+“to try
new C1.”

1860 PRINT CHR$(34)+“2“+CHR$(34)+“to restart.”

1870 RETURN

1880 PRINT:PRINT CHR$(34)+“1“+CHR$(34)+" to

new C1.”
1890 PRINT CHR$(34)+“2”+CHR$(34)+" to restart.”;
1900 RETURN

Additional progress in BASIC can be found in
Chapter 6, Assembly language, and Chapter 8
Communications.

5

THE 6301
MICROPROCESSOR

This chapter covers:

Basic concepts

‘The aim of learning is not knowledge, but action’

Introduction to machine architecture
Programming the 6301:

Registers
The stack

Addressing modes

Instructions
Interrupts

The real-time clock

WHY GO INSIDE THE HX-20?-

Even if you do no more than run pre-
programmed, canned software packages, an
understanding of what happens when a pro-
gram is run will be of value. And, of course,
having this understanding will open up possi-
bilities for the HX-20 that you may not have
previously thought of.

Lest you be scared off by what follows, allow
me to say that no knowledge of maths or
engineering is required. If it were, this writer —
who majored in psychology in college — would
not have been able to spend much of the last 10
or 15 years doing assembly language pro-
gramming.

What is Memory?

You've heard, no doubt, that at the lowest level
a computer uses the binary number system to
store data. This simply means that a computer’s
memory is made up of a large number of
‘devices’ that can be on or off. (Binary is a
number system with only two digits — 0 or
1 — making it a natural for computers. Humans,
on the other hand, have adopted a decimal
number system with digits 0-9.)

On the oldest computers, these devices were
vacuum tubes — banks of lights, each one going

81

on or off depending on whether or not an
electrical signal was fed into them. (Not exactly
portable, and the tubes burnt out regularly.)

Later, tiny electro-magnetic rings were used.
An electrical impulse on a wire going through
the ring would magnetize the ring to a ‘1’ or a ‘0’
condition — the terms on and off no longer
really applied, but continued being used. This
‘magnetic core’ memory was much more reliable
than the old tubes. It also was able to hold its
contents even when the power was shut off.

But then came the transistor. Fast, cheap,
small. A ‘1" condition became a particular
voltage passing through the transistor; the ‘0’
condition became a different voltage.

The next step was the invention of the
integrated circuit, which could reproduce the
electrical effect of many transistors onto one
piece of silicon. Current computers used LSI
chips — large-scale integration — to back the
equivalent of thousands of transistors onto one
chip. It was the invention of LSI that made
microprocessors possible, as well as allowing
you to hold a device in your hand that can store
thousands of binary digits (1/0), or bits.

How memory is used

Throughout all these years, the simple binary
on-off, 1/0 system has been used. But it’s hard

82 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

for people to work with numbers like 1001 —
that’s 9 in decimal. The logical next step was to
group several bits together. Taking three bits
together could give you a number as high as 7
(111). That allows you to use the octal number-
ing system, with eight digits, 0-7.

Even better, you could group four bits
together to give you a number as high as 15
(1111). That would result in a hexadecimal
system with 16 digits. But there are no names
for the digits that run from 10 to 15. So names
were made up: 10 is called ‘A’, 11 is ‘B’ and so
on until 15 which is ‘F’. In other words, the
number 16 in decimal looks like 10 in hex; the
number 30 in decimal looks like 1E in hex.

From this point on, most of what we discuss
will use the hex number system. But keep in the
back of your mind that when we use a digit like
‘A’, we really mean four bits — 1010. To avoid
confusion between hex and decimal — which
share some of the same digit names — we will
preface all hex numbers with a $ whenever there’s
any doubt as to which number system we’re
using. That means $40 is 0100 0000 or 64 decimal.

At this point you may be thinking how much
easier it would have been if computers used
decimal. And there are a few that do. But the
on-off binary system naturally fitted the
machine and makes hardware design much
simpler. The hex numbering system, in parti-
cular, works well on any machine that uses an 8-
bit byte. (Rather than accessing memory a bit at
a time, most computers will operate with 8 bits
or a multiple of 8 bits at one time. This unit is
called a byte.)

One little complication before we go on.
We’ve not talked about negative numbers so far.
Manufacturers could adopt the decimal practice
of putting a minus sign in front of a number, but
it'’s much easier if each number could tell you
whether it was positive or negative. And so
negative numbers on the HX-20 are stored in
something called two’s complement form. We'll
give you one quick example and then refer you
to books like Basic Microprocessors and the 6800 by
Ron Bishop (Hayden Books, 1979) for further
information. By and large, you won’t run into
negative binary numbers very often, so don’t
worry if you don’t understand the example.

To find the two’s complement of a number,
reverse all the bits and add 1. (Computers find it
much easier to add or reverse bits than to
subtract them.) For instance, a byte with the
binary number 1 in it ($01) would look in
memory like:

0000 0001
Invert the bits and you get:

1111 1110
Add 1 and you get:

1111 1111
So, a —1 in memory looks like: 1111 1111
(Remember back in BASIC, that a TRUE con-
dition is equal to —17?)

So we have a computer memory filled with 1’s
and 0’s, or for short, a lot of $1E’s and $6F’s and
$A9’s and $FF’s and so on. How do we find
anything?

Each byte in memory has an address, just like
your house has a street address. This number is
not kept in memory, but is computed by the
hardware when that address is referenced. The
first address is $01. The next is $02. $FFFF is the
highest possible address in the HX-20, because
the HX-20 only allows 16-bits for an address.
(Want to be really confused? What people call an
8-bit computer uses 16-bits for an address, 16-bit
computers use 20-32 bits for addressing,
depending on the design.)

An address of 1600 Pennsylvania Avenue,
Washington DC, would have as its contents a
white house. Similarly, an address of $FFFE on
the HX-20 has as its contents $E0. (Later on we'll
show you how to use the Monitor to look at
memory.)

One of the trickiest things for novices to pick
up is the difference between an address and the
contents of that address. What can make it
confusing is that a memory location can itself
have an address in it, which could point to
another memory location which might have
another address in it, and so on. See Figure 5.1.

In assembly language programs, as we’ll see
next chapter, we can give easier-to-remember
names to each of these addresses.

Address FFFO FFF1 FFF2 FFF3 FFF4

Contents 01 | 09

—

Address 0108 010A 010B 010C 010D

o1|oc|o1l J

Contents [7E EE | 4A 7E l | J
Address EE4A EE4B EE4C
Contents [96 | 11 [96 | l | |

Fig. 5.1 Address pointers in memory

THE 6301 MICROPROCESSOR 83

In the HX-20, some memory is in RAM, some
in ROM. Some is built right in to the 6301
microprocessor chip.

BACKGROUND ON THE 6301
MICROPROCESSOR

The HX-20 uses dual 6301s. The choice of the
6301 chip was undoubtedly made because of the
lack of other CMOS (low power) processors
around at the time. There’s nothing wrong with
the 6301, it's just not compatible with most of
the other microprocessors, used in other
machines. And microprocessor incompatibility
means that assembly language programs written
for Z80s or 8088s have to be totally rewritten to
work on a 6301 machine.

But the 6301 is not a totally new processor.
It's an enhanced, CMOS version of the 6801
which in turn was an enhanced version of the
6800.

The first true microprocessor was Intel’s 8008.
Like most pioneering designs, it was quite
primitive by today’s standards. Intel followed
quickly with the 8080. Another semiconductor/
electronics company, Motorola, also saw the
potential of microprocessors and developed the
6800. The first generation of microcomputer
systems was based on either the 8080 or the
6800. The next generation grew from the Z-80,
an enhancement of the 8080 by some ex-Intel
engineers, and from MOS Technology’s 6502, an
enhancement of the 6800. The Z-80 became the
heart of most business computers, while the
6502 found its way into many personal com-
puters including the Apple, Atari, and
Commodore. The original Motorola 6800, along
with even lesser known processors from Texas
Instruments, RCA, etc., became an also-ran.

There were some interesting applications
developed for 6800 systems, though. There was
briefly, for instance, a militarized, battery-
powered, transportable version, intended for
use in combat situations where army field
commanders needed to track troop movements.
Designed to be carried in a jeep, this 1000-1b
(455-kg) computer was not quite as portable as
today’s HX-20.

None of the 6800-based systems ever really
enjoyed widespread popularity and today,
systems based on the 6800 probably make up
less than 0.1% of micros in use.

Unfortunately, for Motorola — and unlike
the 8080/Z80 relationship — 6800 programs

would not run on the 6502. The design phil-
osophy was similar, the implementation totally
different.

In succeeding years, Motorola developed new
processors, including the popular 68000. But
only the 6801/6802/6803, none of which was used
in any commercial micro system, were compat-
ible with the 6800. Then Hitachi developed the
6301 as a CMOS version of the 6801 and Epson
selected that chip for its HX-20.

MACHINE ARCHITECTURE

Were we to cover in detail how the 6301
processors fit in with the other internal com-
ponents of the HX-20, we’d be getting very
technical very fast. Instead, we’ll just select
those points that are most useful and/or interest-
ing. Readers who want more detail are encour-
aged to contact Epson America for its technical
notes and Hitachi America for its Microcomputer
Data Book.

Besides memory, the real-time clock, and the
I/O interfaces that are discussed elsewhere, the
major internal components of the HX-20 are the
two 6301 processors and the high-speed serial
bus that connects them.

All processing functions are divided up
between the two 6301s. One 6301 is called the
master and the other is called a slave. When the
operating system, the control program that sits
in ROM, wants to take an action that falls into
the slave’s province, it sends a command to the
slave.

For instance, the slave is assigned the task of
listening on the RS-232 port. When you as a user
wish to OPEN the RS-232 port, your program or
BASIC statement in effect has the master tell the
slave to start listening. When you do an INPUT
from the RS-232 port, the master tells the slave
to send him the next byte from the holding area.
All of this inter-processor communication is
done via a high-speed serial (1 bit at a time) path
between the processors. This is the same path
that also has an outlet as a DIN socket on the
back of the HX-20 and to which a disk drive can
be hooked.

By using the serial path, it is not necessary for
the slave to have access to any of the HX-20's
main memory. Let’s say this another way: any
program that you run in the HX-20's RAM or
ROM is processed by the master only. When the
master needs the slave to do something, it sends
a command over the serial path.

84 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

At this point you may be wondering how the
slave knows what to do with the commands it
gets. Since the slave doesn’t have access to the
HX-20's operating system in ROM, the functions
can’t be stored there. The answer is that the
slave has its own memory — right on the
processor chip.

Hitachi’s 6301 processor is very flexible as far
as memory management and can be set up in
different ways for different uses. In the HX-20,
the slave is set up to have a 4K internal ROM in
which Epson has stored all the machine code the
slave needs to execute the commands it receives
from the master. See Figs 5.2 and 5.3.

The master is wired to operate in memory
mode 4, the slave in memory mode 7. So even
though we have two processors that are the

Fig. 5.2 6301 Mode 4, used by the master processor.
Reprinted courtesy of Hitachi America

same, they operate in different fashions. This is
a sophisticated design, called multiprocessing,
and it allows for the two processors to be doing
different things at the same time. In the example
above, for instance, the slave can be filling its
buffer with data received over the RS-232 port
while the master is doing something entirely
different.

PROGRAMMING THE 6301

So, now we’ve figured out that everything in the
computer is just bits. And, that every 8 bits is
called a byte and has an address. But how do we
get from there to executing a program?

When the HX-20 is turned on, the 6301 master

Fig. 5.3 6301 Mode 7, used by the slave processor.
Reprinted courtesy of Hitachi America

THE 6301 MICROPROCESSOR 85

cpu fetches the byte at location $115. This byte is
a $7E. What $7E means to the cpu is: jump to a
specified location. (Similar to a GOTO in
BASIC.) $7E is the operative part of an instruc-
tion, an operation code or op code for short. An
instruction tells the cpu to do something. Each
unique op code tells the cpu to do something
different. There are over 200 op codes, i.e., 200+
combinations of 8 bits, that the cpu will interpret
as instructions when fetched. To repeat, when
the computer fetches a byte from memory, it
interprets it as an instruction and tries to execute
it. This is what is known as machine code.

Now, of course, not all bytes in memory are
instructions. Some are data. But the cpu, not
without being told, can’t tell the difference. If
the cpu fetched a $31 from memory it wouldn’t
know that this was the letter ‘A’. It would think
it was an INS instruction and would try to
execute it. If a $00 was fetched from memory, as
another example, the cpu would try to execute it
and fail, causing a ‘trap interrupt’ to occur,
because there is no such op code as $00.

The missing link in all this is that the cpu
doesn’t try to fetch every byte. It will fetch only
the one byte pointed to by a device called the
program counter. After the op code byte is
fetched, interpreted, and executed, the program
counter automatically increments to the address
of the next op code to be executed — either the
next sequential instruction or an instruction that
is to be branched (jumped) to.

An instruction may be more than 1 byte
long — in fact, most are. All the op codes on the
6301 are just 1 byte, but many tell the cpu that
the next byte or next two bytes are to be acted
upon as data. For instance, a jump instruction at
location $0109 may look like: 7EEE4A. The cpu
will fetch the 7E and put the EE4A in the
program counter as the location of the next
instruction to be executed. As another example,
a store instruction at $D026 may look like
B7013A. When the B7 is executed, the cpu
knows to take the contents of a temporary
holding area called accumulator A and store it
into $013A. The program counter is then auto-
matically incremented by 3 bytes so that it points
to location $D029, where it will find the next
instruction.

The cpu knows that a $B7 instruction means
store the contents of accumulator A at a
specified address and increment the program
counter by 3 bytes. This is simply because it has
been microcoded that way by the manufacturer.
All of the possible instructions a cpu can execute

are collectively called the instruction set which is
designed into the processor chip by the manu-
facturer. Sometimes the same processor is micro-
coded different ways for different purposes. For
instance, a Motorola 68000 can be microcoded to
run the instruction set of an IBM 370 mainframe
computer. But the HX-20's 6301 is very simple:
the instruction set that it runs is the same as that
of every 6301 in the world. It's even simpler
than the ubiquitous Z-80 processor, because the
Z-80’s designers, after using all 256 possible 8-bit
combinations, were forced to design in some 2-
byte op codes.

To highlight what we’ve covered so far: every
legal 8-bit op code will cause the 6301 to take a
unique action.

Registers

On board every microprocessor are special
processing areas called registers. The design of
the mpu chips allows the processor to manipu-
late easily and speedily the contents of these
registers.

Some of these registers are set aside for
special purposes. Others can be used by the
programmer for multiple purposes. In general,
the more registers a processor has, the easier it
is to program. In that respect, programming the
6301 takes more work than programming the Z-
80, but less than 6800.

7 A °U7 B 8-Bit Accumulators A and B
:5— _______ R B o] Or 16-Bit Double Accumulator D
|s X o] Index Register (x)
IL SP 40' Stack Pointer (SP)
Is PC o] Program Counter (PC)

o
IllllHl ||~|z|v. Condition Code Register (CCR}

I t Carry/Borrow from MSB

Overflow
Zero

b= Negative

Interrupt
‘e Hallf Carry (From Bit 3)

Fig. 5.4 The 6301’s registers

There are six registers that the programmer
can examine and/or alter: (Don’t worry about
understanding all of this right away.)

1. Accumulators A and B (ACCA, ACCB). These
are two 8-bit registers that hold operands and
results from the arithmetic logic unit (ALU) of

86

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

the microprocessor. Some instructions can
operate on the two registers as a pair, in
which case they are referred to collectively as
accumulator D (ACCD).

. The index register (X) is a 2-byte (16-bit)

register that can store data or be used to hold
a memory address for instructions in the
indexed mode.

. The program counter (PC) is a 2-byte register

that contains the address of the next instruc-
tion to be executed.

. The stack pointer (SP) is a 2-byte register that

contains the address of the next availabe
location in a push-down/pop-up stack located
in RAM. The HX-20's operating system uses a
stack starting at one location, BASIC uses
another, and any other program can use its
own stack just by loading SP.

. The condition code register (CCR) is an 8-bit

register that indicates the results of ALU
operations. Each bit in the CCR indicates a
different type of result:

C — carry;
V — two’s complement overflow;
Z — zero;

N — negative;
H — half-carry;

MPU

i

(=)

ACCA

m-2

m-1

SP————=m

Data Bus

m+1 7F
Previously
Stacked m+2 63
Data
m+3 FD

=
/

PSHA

PC———

(—

Next instr.

L/

—
(a) Before PSHA

6. In addition, the CCR contains an interrupt
mask. The other two (high-order) bits of the
CCR are not used.

The stack

Many of the 6301’s instructions are oriented
towards use of a stack. A stack is simply a way
of assigning an area of memory for keeping track
of specific types of information. (The FORTH
language is stack oriented, as we’ll see in a
future chapter.) A stack works much like a pile
of TV dinners at your local supermarket. When
you buy a TV dinner, you probably pull off the
top one. The next shopper probably does the
same, pulling off the new top one. When the
supermarket clerk goes to replenish the pile, if
he’s lazy, he'll just put each new one on top of
the old. This is called a LIFO (last in, first out)
stack; also known as a push-down/pop-up or
push/pull stack.

Look at Figure 5.5. A PSHA instruction is
about to be executed. The program counter (PC)
points to the PSHA instruction. Accumulator A
contains an F3. The stack pointer (SP) points to
the next free slot in the stack, which is called
‘m’. This ‘m’” might be $100, for instance. (Think

MPU

=]

]

ACCA

m-2

SP——=m-1

New Data m F3 K ‘
m+1 7F
Previously
Stacked m+2 63 L
Data
m+3 FD
_‘/3¢____—

PSHA

PC————= Next Instr,

(b) After PSHA

Fig. 5.5 Stack operation (Push instruction).
Reprinted courtesy of Hitachi America

THE 6301 MICROPROCESSOR 87

of the machine having the low addresses on top
and the high addresses on the bottom.)

Previously stacked data went into m+1 ($101)
and m+2 ($102), etc. Now, when the PSHA is
executed, the F3 from ACC A is put on the stack
at m (e.g.,$100), and the stack pointer now
points to the next free slot m—1 (e.g., $FF). The
program counter points to the next instruction
after the PSHA. Everything that was on the
stack from before remains on the stack.

If the instruction had been a PSHX, and the
index register X had contained $8001, then the
stack would have ended up with $80 at location
m ($100) and $01 at location m—1 ($FF). The
stack pointer would have been decremented 2
bytes and would now point to m—2 ($FE).

Pull instructions work like push instructions
in reverse. See Figure 5.6. A PULA instruction
would increment the stack pointer by one,
taking the top byte ($1A) off the stack and
placing it into the A register. (Again, keep
in mind that the ‘top’ of the stack is towards the
low-address part of the machine.) The space
occupied by $1A would now be ‘free’ and would
be re-used when the next push was done.

When you call a subroutine, you’ll be using a
stack — the system will put your return address

MPU
acca [
m-2
m-1
SP———=m
m+1 1A
Previously
Stacked m+2 3c
Data
m+3 DS
EC
L/_-
e PULA <:
Next Instr. L/

(a) Before PULA

on the stack and pull it off when your sub-
routine issues a return instruction. More on the
stack later.

Addressing modes

As we know, each op code tells the mpu to
execute a specific function. An 86, for instance,
tells the mpu to load accumulator A with the
byte immediately following the op code. On the
other hand, a B6, which is also a load accumu-
lator A instruction, tells the mpu to load A with
the contents of the 2-byte memory location
specified after the op code.

Example Before instruction 8605
contents of A: xx (anthing)
After instruction contents of A: 05
Before instruction B60B00
contents of A: XX
contents of memory location $0B00: 31
After instruction
contents of A: 31

The 05 in the first example and the OB00 in
the second are called the operands of the
instruction. The different ways by which the
mpu carries out the same function are called

(—

MPU

ACCA

m-2

m-1

m

SP—= m+1 1A

m+2 3C

Previously
Stacked m+3 DS .
Data
EC

_/—
/—

PULA

Next Instr.

(b) After PULA

Fig. 5.6 Stack operation (Pull instruction).
Reprinted courtesy of Hitachi America

88 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

addressing modes. The various addressing
modes defined for the 6301 mpu allow the
programmer to access and manipulate the mpu’s
internal registers as well as main memory.

If the programmer uses an assembler, then an
op code will be selected by the assembler based
on the mnemonic and the operands coded. For
instance:

LDAA #$05 will assemble as 8605 (2 bytes)
LDAA $0B00 will assemble as B60B00 (3 bytes)

If you code the operands directly or ‘hand-
assemble’ code, then you are responsible for
using the right op code/operand combination.

There are six addressing modes on the 6301:
implied, immediate, direct, extended, indexed,
and relative.

Implied (or Inherent) Addressing Mode

The op code of the instruction provides the
complete specifications as to what is to be acted
upon. For instance, PSHX, the instruction to
push the contents of the index register onto the
stack, tells everything that is to be done. As no
operands are necessary in this mode, the
instructions are 1-byte long.

A related mode, called accumulator address-
ing, which works on just accumulator instruc-
tions, is often listed separately in technical
documentation. In fact, the original Motorola
manuals had the accumulator as a separate
instruction operand, e.g., LDA B. But it is really
just a subject of implied addressing and is being
treated as such in this book.

Immediate mode

In this mode, the value to be processed is
specified in the second byte of the assembled
instruction, or the first (and only) operand of the
source code. For instance:

LDAA #$05 will assemble as 8605 and will
load the value 05 into accumulator A.

(Exceptions Because CPX, LDX, and LDS
operate on 16-bit quantities, the value to be
processed is specified in the second and third
bytes.)

Immediate mode instructions are relatively
fast because no further memory accesses are
required —once both bytes of the instruction
have been fetched, the mpu can process to
completion, update the program counter and
fetch the next instruction.

Direct addressing

Like immediate addressing, the mpu will fetch
the second byte of this instruction after decoding
the op code. But unlike the immediate mode,
this second byte is not a value to be acted upon
directly but is instead a 1-byte address.
(Remember The mup can tell what addressing
mode is used from the op code.) If you're quick,
you've realized that a 1-byte address only allows
you to access memory locationsO-FF. (FF is the
highest hex number that can be stored in 1
byte.)

Example Before instruction LDAA $BC
contents of A: XX
contents of memory location $00BC: 05

After instruction
contents of A: 05
AIM, OIM, EIM, TIM are 3-byte instructions,

the remainder are 2-byte instructions.

(96BC)

Extended addressing

Like direct addressing, what follows the op code
is the address whose contents are to be operated
on. The difference is that instructions in
extended addressing mode use a 2-byte address.

Example Before instruction LDAA $0A40 (B60A40)
contents of A: XX
contents of memory location $0A40: 05

After instruction
contents of A: 05

With extended addressing, any place in
memory can be accessed. (Remember The
highest address the HX-20’s 6301 processor can
access is $FFFF, which is the highest possible
binary number that will fit into 2 bytes.)

These are all 3-byte instructions.

Note We've used hex values for all memory
locations, but most assemblers will accept a label
instead. An LDAA $0B00, where $0B00 con-
tained $05 could also be an LDAA ADRI1 if
ADRI1 was a label for a memory location that
had a $05 in it.

Another note Programs that use extended
addressing normally will not be relocatable, i.e.,
cannot run at an address other than that at
which they were assembled, because they will
contain actual addresses.

Indexed addressing

Indexed addressing looks like direct addressing
with an added operand — X’ — the index
register. But it doesn’t have anything in com-

THE 6301 MICROPROCESSOR 89

mon with the other addressing methods. The
number specified in the first operand is simply a
number that is added to the contents of the
index register to form a 16-bit memory address.
The contents of this location are then processed.

Example: Before instruction LDAA $01,X (A601)
contents of A: XX
contents of X: 0A40
contents of memory starting
at $0A40: 040506. . .
After instruction
contents of A: 05

Instructions in indexed mode are 2-bytes
long, except for AIM, EIM, OIM, and TIM which
are 3 bytes. It's the last byte of the instruction
that is added into the index register. The index
register is not actually changed by this process,
as all manipulations are carried out by the mpu
‘behind the scenes’.

The value of indexing is that it allows memory
accesses to be changed while a program is
running. This is very useful for table handling,
for instance, when you want to use the same
code to retrieve the 2nd-nth element of a table.
(Just increment the index register between
accesses.)

Relative addressing

Like direct addressing, instructions in relative
addressing format have, as their second byte, a
memory location that the mpu will access. The
difference is that, with relative addressing, this
address is not an absolute value but is instead a
memory location relative to the current location
pointed to by the program counter. In other
words, this second byte is added to the program
counter to obtain the address.

A range of addresses 127 bytes forwards or
backwards counting from the byte after the
instruction can thus be accessed. (0-127 is the
maximum range that can be specified in 7 bits;
the high-order bit of the address byte is the sign
bit, i.e., it indicates whether the branch is
forwards or backwards.) With respect to the
start of the branch instruction (or the PC) —
only branch instructions use relative addressing
— the range is —126 to +129, because the
branch instruction is 2 bytes long.

Keeping branches within this range means
not violating any relocatability rules. Branches
outside of this range require JMP (jump) instruc-
tions, which have the absolute address in the
instruction.

Note If a branch test is successful, the
relative displacement is added to the PC, plus
two additional bytes for the instruction length,
and then the PC will point towards the next
instruction to be executed.

THE HX-20 INSTRUCTION SET

The following is based largely on information
supplied by Hitachi America Ltd. All of the
diagrams (Tables 5.1-5.5) have been reproduced,
with permission, from Hitachi’'s Microcomputer
Data Book (HLNO062). For a fuller explanation of
the instruction set, with examples, use a book
like Basic Microprocessors and the 6800 by Bishop
(Hayden, 1979). Chapter 6 explains how to use
the machine instructions from an assembly

language program.

Explanation of the Tables

Operations: type of instruction

Mnemonic — this is the name of the instruction as
used by the Hitachi assembler and by the 6301
mini-assembler in Chapter 6. Note Assemblers
based on the original Motorola 6800 documen-
tation use a space between the common part
of the mnemonic and the register (if any) that
it acts upon. For example, ADDA nnnn — the
instruction to add the contents of memory
location nnnn to the contents of accumulator
A — could be written as ADD A nnnn.

Addressing modes — the legal addressing mode
for each instruction. Note that relative mode
is not legal for the instructions in the first part
of the chart. If a box for an instruction is
empty, then that mode is not legal for that
particular instruction. For instance, ADDA
does not have an implied mode, because
implied mode specifies that no operands are
necessary — which, of course, is not true for
ADDA. (You can’t tell from looking at just the
mnemonic ‘ADDA’ what is supposed to be
added to accumulator A.)

Op — the operation code in hex of the
instruction. As we’ve noted previously, this
number is what makes each instruction
unique, i.e., the processor knows what instruc-
tion you want executed by examining this
number.

~ — this is the time it takes to execute this

90

Table 5.1 Accumulator and memory manipulation instructions

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Reprinted courtesy of Hitachi America

Condition Code
Addressing Modes .

Operations M Boolean/ Register
IMMED. [DIRECT | INDEX [EXTEND | IMPLIED| A iihmetic Operation s[a[3][2]1]0
OP |~ |#|OP|~ |#|OP|~|#|OP|~[#|OP|~|# H|I[N]Z{V]|C
Add ADDA (88 |2[2|9B |3 |2]|AB|4 |2 [BB |43 A+B— A tlet[t[t]s
ADDB ce|2|2]|oB|[3[2]|eB|a[2 [FB |43 B+M-B tleft|t|t]s
Add Double ADDD |[C3|4|3|D3|5(|2|€E3|6(2|F3|6(3 A:B+M:M+1—-A:B [efe[tls[s]2
Add Accumulators ABA iB|[2|1]A+B—A $le |ttt
Add With Carry ADCA 89 (21299 |3 [2]|A9]|4a |2 (B9 |43 A+M+C—A tlejt]t|t]s
ADCB c9|2|2|p9|3(2]|e9]|a|2]|F9]4 |3 B+M+C—B tle |ttt
AND ANDA |84 (21294 |3 [2]|A4]|a|2|B4 |4 |3 AM—A oleftis|R]e
ANDB c4|2|2|04a|3|2]|€Ea|4a|2]|Fa|a |3 B-M—B efeft|t|R]|e
Bit Test BITA 85 (2|2]95 [3[2]|Aa5]|a[2|B5 |4 |3 A-M elejt|t|R]e
BIT B cs [2|2|ps5 |3 [2]|es|a{2|F5 |43 B-M elejt|t|R|e
Clear CLR 6F |62 [7F [6 |3 00—+M e[[R]s[R]R
CLRA 4F [2[1]00-> A o [e[R]S]R]R
CLR8 sF|2|1|o0—~8 elelR|S|R|R
Compare CMPA 81 |2|2(91{3|2]Aa1|4a]|2(B1]4]3 A-M olelsis|s]s
CMPB C1{2|2|p1|3:2]e1|a|2]|F1|a|3 B-M eleftls]t]s
o tors cBA 11{2|1|a-8 N RE
Complement, 1°s COM 63612 {73 |6 (3 M->M elejt{tiR]|S
COMA 321]A-A DB BGEE
CcOMB 53 |2 |1 |B —8 eje ittt (R]S
Complement, 2's NEG 60 (6|2 [70 [6 |3 00-M—-M efelt]t]|@®@
(Negate) NEGA 40 |2 |1 |00-A— A elelt|t|®@
NEGB 50 |2 |1 |{00-B—~B oo ||t |®D|@
Decimal Adjust. A | DAA 19 |2 |1 |Sonvertsbinary 2dd ofBCD le e |2 |1 |2 |@
Decrement DEC 6A |62 |7A |6 |3 M-1-M ele |t |t |@|e
DECA aAl21]a-1-A oleit]t]@]e
DECB SA|2|1|B-1—>B ole|t|t|@]e
Exclusive OR EORA |88 [212 |98 [3 [2|A8 |4 (2 |BB {4 (3 A@M—A eleitis|R]|e
EORB cg [2|2|og|3|2]|es|a]2 |F8 |43 B@M—B DOOBBED
Increment INC 6C |62 [7C |6 |3 M+1-M oo (t|t]®]e
INCA 4C |2 {1 |A+1 A eleit|t(®]|e
INCB sC|2l1|B+1~8B ele}t |t |Bfe
Load LDAA |86 [2]2 |96 |3 |2 |A6]|4 |2 |B6 |4 |3 M- A ejeft[t]|R]e
Accumulator LoAB |ce6 |2 |2 |D6|3 |2 [e6 (4|2 |F6 |4 |3 M-8 ofleft[t]|Rr]e
Load Double oo |ccia|3|oc|a |2 |ec|s |2 [Fc|s |3 M+1-B,M=A eleft|tlr]e
Multiply Unsigned MUL 3D|10|1 |AxB—-A:B elejeje e i@
OR, Inclusive ORAA |[8A|2(2]9a[3[2]|AA[4a[2]|BA[4 (3 A+M—A e feltTs[R]e
ORAB cal2|2]pal3 |2]ealal2[Fala]3 B+M— B e (e [Tt [R[e
Push Data PSHA 36 |3|1]A—>Msp,SP-1—SP oefe|efe]e
PSHB 37 {3|1|B—+Msp,SP-1->SP ej|ojeio|o]|e
Pull Data PULA 32|41 |SP+1—>SP,Msp—~ A e(ejo|ofole
PULB 33[4]|1|SP+1—>SP,Msp—~B elefelefe]e
Rotate Left ROL 69 (6|21|79 |6 |3 " efe ||t |®|¢
ROLA 4921A]m DOBBAE
ROLB so(2[1]|e’ ¢ % YO HEBGE
Rotate Right ROR 6616|276 |6 |3 ~M eleititim|t
RORA 46 2 |1 A}E@—ﬁ? elejt|t|®]t
RORB 56 |2[1]|8 . t{t]s]t

(Continued)

THE 6301 MICROPROCESSOR

Reprinted courtesy of Hitachi America

Table 5.2 Continuation of accumulator and memory manipulation instructions

Addressing Modes “"ﬂ;ﬁ;?"'
Operations Mnemonic | |MMED. | DIRECT | INDEX |EXTEND [IMPLIED | ., Sooted/ . = I5Ta[3[2[1]o0
OP |~ |#|OP |~ |#|OP|~|# |OP |~ |#|OP|~|# H|1|N]|Z|V]C
Shift Left ASL 68 |6|2|78 |63 M — o (t|t|®|
Arithmetic ASLA 48 [2 1 |a} [JTITITIT 0 (e]e |t [t]!
ASLB sg [2[1]8) € ®7 b0 NOBRCEE
Double Shift e
Left, Arithmetic ASLD 05 |3 |1 ([ACCATATE oo |0 o 2|4 (@)
Shift Right ASR 67 |6|2 (77 |63 ™ R elefs|t O
Arithmetic ASRA a7 [2 1 A) %:EEE[II:H;I oo 3|1 1Ot
ASRB s lz21]% 7 i oo [t]t®[2
Shift Right LSR 64 161274 |63 M - eleft{t|®
Logical LSRA 44 [2[1 AlO*EEI'_'EEIID"Q 0BRGN
b7)
LSRB 54 [2]1]8 BB EBGE
o m—
B LSRD 04 |3 |10 [[e|e|r|t|®|t
Store STAA 97 {3 [2|A7|4 |2 |B7 |4 |3 A->M . t|t[Rr[e
Accumulator STAB o7|3 [2{e7 (a2 [F7 4|3 B M ele [t [t[R]®
i‘g:n?uol:?olf STD DD|4 (2 [ED|5 |2 |[FD|5 |3 é:m+1 ole|t|s[R]e
Subtract SUBA 80 |2 (2|90 |3 |2|A0|4a |2 (B0 |4 |3 A-M-A . I AERERE
SuBB col2|2|o0|3|2|E0|4 |2 [FO 4|3 B-M-B . HEHE
Double Subtract SUBD 83 {4 (3|93 |5 |2{A3|6 |2 (B3 |63 A:B-M:M+1—+A:B [ele(t |t 2]t
iﬁ;’:ﬁlators SBA 10 |2 |1 |A-B—A CECRERERERE]
Subtract SBCA 82 |2 2|92 |3 |2]|A2|4 |2 (B2 |4 |3 A-M-C-A olefsss]s
With Carry SBCB _ |C2 |2 |2 |D2|3 |2 |E2|4 |2 |[F2 |4 |3 B-M-C—8B NONRAE
Transfer TAB 16]2]|1[a-8B ejeft|t[R]e
Accumulators TBA 1712118= A elelt|t|R]|e
Test Zero or TST 6D |6 |2 {7D |6 |3 M-00 e|leit|[s|RIR
Minus TSTA 4D |2 |1 [A-00 oo (t|¢t|RIR
TSTB sp[2[1]B-00 elels]t[R]R
Table 5.3 Index register, stack manipulation instructions
Reprinted courtesy of Hitachi America
Addressing Modes o Con:::;: .?odo
Pointer Operations | Mnemonic [\MmeD | DIRECT | INDEX | EXTEND |IMPLIED | Arithmetic Operation |5]4|3]2]1]0
op[~[#|or[~[#loP[~Tw]oP[~T#{oP[~]# HlT[N[Z[V]C
Compare index Reg CPX 8C|{3|3({9C|4]|2|AC|5]|2(|BC|5|3 X—-M:M+1 LA RS EARE K]
Decrement Index Reg DEX 09 |1 |1 |[X=1-X ojlofo[t|e]e
Decrement Stack Pntr DES 34 (1|1 |SP~-1-SP ojo|ojofo]fe
increment Index Reg ~”I_b;)('___-» 0811 |X+1-X oloejoitlefe
Increment Stack Pntr INS 31 |1 |1 [SP+1—~SP ojloelejoie]|e
Load Index Reg LOX CE|3|3|DE(4 |2 (EE|5|2(FE|5]|3 M= Xy, (M+1) = X ele|@®|s|R|e
Load Stack Pntr LDS BE |3|3|9E |4 |2 |AE|5|2|BE|5(3 M— SPy, (M+1)=+SP (e |e|D]L IR |e
Store Index Reg STX OF (4|2 |EF |5 |2 |FF |53 Xy =M X ~(M+1) e(e|@|t|R]|e
Store Stack Pntr STS 9F |4 |2 [AF|5|2|BF |53 SPy—~M,SP_~(M+1) [e e |D|s|R]e
Index Reg — Stack Pntr | TXS 351 |1 |[X-1-5SP ejlejojojo]e
Stack Pntr — Index Reg| TSX 30 (1|1 |SP+1—=X elefojojole
Add ABX A1 |1 (B+X~X ojolo|oje]e
Push Dats PSHX IC |5 |1 XL *Mg SP-1+SP |e|ejejoje|e
Xy = My, SP -1 SP
Pull Dats PULX 38 (4|1 [SP+1+SP Mg~ Xy (e]e]eje]efe
SP + 1+ SP, Mgg ~ X_
Exchange XGDX 18 {2 [1 |ACCD~IX ololojo]|o]|e

91

92

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

Table 5.4 Jump, branch instructions

Table 5.5 Condition code register manipulation instructions

Reprinted courtesy of Hitachi America

Addressing Modes Condition Code
i " i Register
Op RELATIVE | DIRECT | INDEX [EXTEND [imMPLIED Branch Test s[a]3]2]1]o
OP|~|#|OP|~|#|OP|~|#|OP|~ |#|OP|~|# HlI|IN|Z|V|C
Branch Always BRA 20(3]2 None olejefefele
Branch Never BRN 21(3|2 None e|leje]|efe|e
Branch If Carry Clesr 8cC 24132 c=0 ojelojojoe
Branch If Carry Set 8Cs 25|32 C=1 ele|e|e|ele
Branch If = Zero BEQ 27132 Z=1 ejejele|e]e
Branch If > Zero BGE 2C| 3|2 N@®V=0 eojlojeojeo]e|e
Branch If > Zero BGT 2€| 3|2 Z+(IN®OV)=0 ejlele|e]e}e
Branch If Higher 8HI 22|32 C+2=0 eje|e]e]e]e
B8ranch If < Zero BLE 2F| 3|2 Z+IN@Q V=1 ole|e|e|e|e
Sranch If Lowar Or 8LS 23|32 cez=1 elefefo]fe]e
Branch If < Zero BLT 20§ 3|2 N@V=1 ele|efe]e|e
Branch If Minus 8MI 28(3|2 N=1 olejojofe]e
Branch If Not Equal -
Zero BNE 2613|2 Z=0 ejlejelelele
Branch if Overtlow 8vc 28|32 v=0 olofefofo]e
Branch If Overflow Set| BVS 2|(3)2 V=1 elejeje]ele
Branch If Plus BPL 2A1312 N=0 e|loejeloje|e
Branch To Subroutine BSR 80|52 ejejeeleie
Jump JMP 6E |3 {2 |7E |3 |3 See Special Operations (e e (e |e e e
Jump To Subroutine JSR 9D |5 |2 |AD{5 |2 8D |6 (3 eje|ojeje]e
No Operation NOP 01|11 8""::"“’ Prog.Catr. |4 g e [e]e]e
Return From Interrupt] RTI 38 {10{1 ® —
Return From
Subroutine RTS 39 |5 |1 See 121 O i eje|e o le]e
Software Interrupt Swi 3F 121 e |S|e |e 0
Wait for Interrupt® WAI 3€ |9 |1 o |@fe |o ||
__Sleep_ SLP 1A]4 |1 olejojele]e

*WAI puts R/W high; Address Bus goes to FFFF; Data Bus goes to the three state level.

Reprinted courtesy of Hitachi America

A ingMod Condition Code Register

Opérations Mnemonic IMPLIED Boolean Operation 5| a4 |32]

OP | ~ | # H I INJZ |V |C

Clear Corry CLC oC [1 |1 0~C e|leoe|e|e|e R

Clear interrupt Mask CcL 0E | 1 |1 0-1 | R|o®|e e |0

Clesr Overflow CcLv 0A | 1 |1 00—~V e|e|eoe e |R |e

Set Carry SEC 00 |1 |1 1-C e|le|oefe]e]s

Set Interrupt Mask SEI OF | 1 1 1~ e |S|e|e e e

Set Overflow SEV 08 1 |1 1-V e |e|oe eSS |e
Accumulator A - CCR TAP 06 |1 11 A- CCR ®

CCR ~ Accumulator A TPA 07 |1] CCR— A e[efJefee]e

instruction, specified in machine cycles. If you
have an interest in writing a program that
runs as quickly as possible, use instructions
that take the smallest number of cycles. (Note
that indexed and extended addressing
instructions are slower than other modes.)
Or, you may write a program that is timing
dependent, such as I/O drivers. In this case,
you can time events fairly accurately based on
program loops. (The actual instruction cycle
time in the HX-20 is 1.6 microseconds.) If you
don’t have any interest in either of the above

situations, then you can ignore this column
completely.

— the number of bytes taken up by this
instruction in this addressing mode. This is
handy information for debugging, or for
reducing program size. Normally, in writing a
program, you'd ignore this column.

Boolean/arithmetic operation — what the instruc-
tion actually does.

+ arithmetic plus (add) or Boolean Inclusive

THE 6301 MICROPROCESSOR 93

OR (if either operand is on, turn on result bit)
— arithmetic minus (subtract)

@® Boolean AND (if both bits are on, turn on
result bit)

@ Boolean Exclusive OR (if either bit is on,
but not both, turn result bit on)

M memory location

Msp contents of memory location pointed to
by the stack pointer

N}' complement of M

— transfer into

0 bit = zero

00 byte = zero

b bit

IMM = immediate data

A or ACCA= accumulator A

B or ACCB = accumulator B

ACCD = accumulator D (A & B operated
on together)

Xor IX = index register

sp = stack pointer

H = high order byte (most significant

d1g1t) e.g., the OA in $0A40
= low order byte (least significant
d1g1t), e.g., the 40 in $0A40

Examples ADDA arithmetically adds accumulator
A plus the contents of a memory location and
stores the result in A. This memory location can
be the instruction itself + 1 (immediate mode),
in the first page of memory (direct mode), found
by adding a displacement to the contents of the
index register (indexed mode) or specified by a
2-byte address (extended mode).

Another example: ROL (rotate left) moves all
bits 1 to the left. Bit 7 (b7) gets moved to the
carry flag (C), which itself is moved to bit 0 of
the byte being processed. (The byte operated
upon can be the A or B accumulator or a
memory location.)

Condition code register

The six flags in the condition code register (CCR)
may be changed by the execution of the
instruction. The resulting condition of each flag
is given in these columns.

H = half carry flag (from bit 3)

I = interrupt mask

N = negative flag (sign bit)

Z = zero flag

V = overflow, 2’s complement

C = carry bit (from bit 7)

R — reset always

S — set always

$ — test and set if true, cleared otherwise

@ — not affected

Examples All of this may be made clearer with
some examples.

For instance:

ADDA #$0F where accumulator A contains
$03.

Result is $12.
What happens:

1. The half-carry flag is tested. In this case, it
will be set on because the operation caused
bit 3 (counting from right and starting with
zero) to overflow and thus cause a bit to be
carried over to the left nibble. (You can try
this yourself using the Monitor, as we’ll show
you later on.)

2. The interrupt mask is unaffected.

3. The sign bit is not set negative in this case. (It
would be if we had added a —$10 to our
original $OF.)

4. The zero flag is not set. (It would have been if
we had added —$0F to our original $0F.)

5. The two’s complement overflow flag is not
set. (It would have been if we had added two
negative numbers and the result was more
minus than —$7F.)

6. The carry bit is not set. (It would have been if
we had added $F1 to our original $0F.)

More examples PSHA — No condition code flags
are affected by this operation.

CLRA — This operation to zero-out accumulator
A will turn off (if on) the negative, overflow,
and carry flags and turn on the zero flag.

BCD

The explanation of the Decimal Adjust A (DAA)
instruction on the chart notes that it ‘converts
binary addition of BCD characters into BCD
format’. BCD is a handy way of storing
decimal digits. Each nibble is assigned one
digit. For instance,

24 (decimal) would be: 0010 0100

If this were straight binary, 00100100 would be

$24 (hex) or 36 (decimal).
But if we try to do arithmetic with BCD
numbers, we don’t get the right results
because the computer thinks the numbers are
ordinary binary. For instance,

0000 0110 6
+ 0001 0100 14

0001 1010 which is not a valid BCD

94 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

number. We tell the processor to transform
this quantity into a valid BCD number with
the DAA instruction. The A accumulator
would then have:

0010 0000 20

Additional notes

Flag is set if the test is true, reset (cleared)
otherwise.

@ (Flag V) Test: Result = 1000 0000 ?

@ (Flag C) Test: Result <> 0000 0000 ?

(3 (Flag C) Test: BCD character of high-order
byte greater than 10? (Not cleared if
previously set.)

@ (Flag V) Test: Operand = 1000 0000 prior to
execution?

® (Flag V) Test: Operand = 0111 1111 prior to
execution?

© (Flag V) Test: Set equal to result of N @ C
after execution

@ (Flag N) Test: Result < 0 ? (Bit 15 = 1)

® (All): Load condition code register from
stack

@ (Flag I): Set when interrupt occurs. If
previously set, a non-maskable interrupt is
required to exit the wait state.

@ (All): Set according to the contents of
accumulator A

@ (Flag C) Test: Result of multiplication, is bit
7 of accumulator B = ?

m-2
m-1
SP———=m
m+1 7€
B
PC—n BSR
n+1 +K* = Offset
n+2 Next Main Instr.
L/

*K = Signed 7-Bit Value

(a) Before Execution

Special operations

Note 1 The RTI, RTS, SWI, and WAI instruc-
tions affect the stack and are explained in
the interrupt section.

Note 2 BSR and JSR will increment the
program counter so that it will point to the
next sequential address, then push the PC on
to the stack, then complete a new value for
the PC (the address to be branched to).
Then, when the RTS pops its return address
off the stack into the PC, it will point to the
correct place.

Note 3 JMP in the indexed mode will add
the displacement (offset) to the value in the
index register in computing the number to
put into the PC.

For old 6800 hands:
The 6801 adds the following instructions to
the basic 6800:

ABX — Adds the 8-bit unsigned accumulator
B to the 16-bit X-register taking into
account the possible carry out of the low-
order byte of the X-register.

ADDD — Adds the 2-byte value found at the
specified memory location to the contents
of ACCD (accumulator A + accumulator
B).

ASLD — Shifts all bits of ACCD one place to
the left. Bit 0 is loaded with 0. The C bit is

SP —=m-2
m-1 (n+2)H
m (n+2)L
m+1 7€
n BSR
n+ +K* = Offset
n+2 Next Main Instr.
PC—(n+2) tK 1st Subr. Instr.
L —

(b) After Execution

Fig. 5.7 Program flow for BSR

THE 6301 MICROPROCESSOR 95

loaded from the most significant
(leftmost) bit of ACCD.

LDD — Loads 2 bytes of memory into ACCD.

LSRD — Shifts all bits of ACCD one place to
the right. The high order (furthest left) bit
of accumulator A is loaded with 0. The C
bit is loaded from the least significant bit
of accumulator B.

MUL — Multiplies the 8 bits in accumulator A
with the 8 bits in accumulator B to obtain
a 16-bit unsigned number. The most
significant byte is stored in A, the least
significant in B.

PSHX — The contents of the index register
are pushed onto the stack at the address
contained in the stack pointer. The stack
pointer is decremented by 2.

PULS — The index register is pulled from the
stack beginning at the curent address
contained in the stack pointer + 1. The
stack pointer is incremented by 2 in total.

STD — Stores the contents of ACCD in
memory.

SUBD — Subtracts the contents of a 2-byte
memory location from ACCD.

BRN — Never branch. A 2-byte NOP.

/

m-1 (n+3)H

m (n+3)L

m+1 7€

7A

f
/

n JSR =8D

n+1 Sy = Subr. Addr.

n+2 S = Subr. Addr.

n+3 Next Main Instr.

L
_/_T

Last Subr. Instr.

PC—Sp RTS

L —

(a) Before Execution

Also, the CPX instruction has been changed to
permit its use with any conditional branch
instruction.

On top of that, the 6301 adds the following
instructions to the 6801:

AIM — AND Immediate with Memory; evalu-
ates the AND of the immediate data and the
contents of a memory location and stores the
result at the memory location.

OIM — OR Immediate with Memory; evalu-
ates the OR of the immediate data and the
contents of a memory location and stores the
result at the memory location.

EIM — EOR Immediate with Memory; evalu-
ates the exclusive OR (EOR) of the immediate
data and the contents of a memory location
and stores the result at the memory location.
TIM — Test Immediate with Memory; evalu-
ates the AND of the immediate data and the
contents of a memory location and sets the
CCR flag.

XGDX — Exchange D with X; exchanges the
contents of accumulator D with the index
register.

SLP — Sleep; put the microprocessor into the
sleep mode.

—
m-2
m-1 (n+3)H
SP———=m (n+3)L
m+1 7€
*
/
n JSR = BD
n+1 S = Subr. Addr.

n+2 S = Subr. Addr.

PC—n+3 Next Main Instr.

/_
/—

Last Subr. Instr.

Sn RTS

(b) After Execution

Fig. 5.8 Program flow for RTS

96

Table 5.6 OP Code map
Reprinted courtesy of Hitachi America

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

oP Acc T acc | o [€x27 ACCA or SP ACCB or X
CODE A 8 DR [MM [DIR T IND [EXT [MM | DIR T IND [EXT
Hi | 0000 | 000t | 0010 | 0011 | 0100 | 0101 | o110 | o111 | 1000 | 1001 [1010 | tors | 1100 | 1101 | 1110 | 1in
Lo 0 ! 2 3 4 5 6 7 8 9 A) c) E F
1000 | 0 SBA [BRA [TSX NEG SUB 0
0001 | 1 |NOP [CBA | BRN [INS AIM CMP [
0010 | 2 BHI | PULA oM SBC 2
00118 BLS [PULB CoM SUBD | ADDD 3
0100 | 4 | LSRD BCC | DES LSR AND 4
0101 | 5 | ASLD BCS [TXS EIM BIT 5
0110 6 [TAP | TAB [BNE | PSHA ROR LDA 6
o1 |7 [TPA [TBA [BeEQ [PsHB ASR STA STA 7
1000| 8 [INX [xGDx[sBvC |PuLX ASL EOR 8
1001 [9 [DEX | DAA [BvS [RTS ROL ADC 9
0] afcv |stp |eeL [aBx DEC ORA A
10118 |SEv [ABa [emi [ATI TIM ADD B8
1100 | ¢ | CLC BGE | PSHX INC CPX LDD c
1101 [o | SEC BLT [muL TST BSR | JSR STD)
1moje|cu BGT | WAI JMP LDS LDX 3
MMEED BLE [SWI CLR STS STX F
0 [2 3 4« [s [e 7 s s [A ® c [o[JeF

UNDEFINED OP CODE
* Only each instructions of AIM, OIM, EIM, TIM

INTERRUPTS

In normal circumstances, the processor is con-
trolled by a program. This program can be the
operating system or a machine language pro-
gram that you've loaded, or the BASIC inter-
preter executing statements that you've typed
in, etc. The processor fetches an instruction in
memory, does whatever that instruction calls
for, then fetches another instruction. But there
are times when we want to interrupt the normal
program flow to process special situations.

While your program, for instance, is awaiting
keyboard input, the HX-20 goes into a reduced
power mode called the sleep mode. But then
how do we wake it up? Or, when the power
switch on the HX-20 has been turned off, how
do we tell the processor that you've turned it on
again? The way it’s done is through a mechan-
ism common to nearly all computers, a hard-
ware/software combination called an interrupt.

Most microcomputers, including the HX-20,
are designed so that certain activities outside of
the processor will cause a signal to be sent to a
certain pin on the processor chip. When the 6301
gets this IRQ signal, it finishes the instruction it
has been processing and before starting another
it looks at the interrupt mask in the condition
code register. If this bit is on, then interrupts are
‘masked off’, i.e., they are ignored. If the bit is
off, then the processor jumps to a particular
address in memory.

There are two other interrupt signals that
work similarly. A signal on the NMI pin of the
processor is a non-maskable interrupt. When the
6301 gets an NMI, it ignores the setting of the
interrupt mask in the condition code register.
Similarly, if a signal is present on the RES pin,
then the 6301 does a complete reset of the
system.

The address that is jumped to depends on the
type of interrupt. So far, all of this is handled in
hardware, outside the control of the pro-
grammer.

The addresses that the 6301 will jump to are
specified in a ROM area on the chip itself.
These are shown in Table 5.7

Table 5.7

Priority Vector Type of Interrupt Jump 1 Jump 2

Highest $FFFE — FFFF Reset (RES) $E000 $OF
FFEE — FFEF Trap 0106 7EDFFA
FFFC — FFFD Non-maskable
(NMI) 011B —
FFFA - FFFB Software (SWI) 0118 —
FFF8 — FFF9 IRQ 0115 7EEF49
FFF6 — FFF7 Timerinput(ICF) 0112 7EEF97
FFF4 — FFF5 Timer output
(OCF) 010F 7EF530
FFF2 - FFF3 Timer overflow
(TOF) 010C 7EEF9F
Lowest FFFO —FFF1 Serial comm 0109 7EEE4A

THE 6301 MICROPROCESSOR 97

Note RES, NMI, and IRQ are normally shown
with a bar over them. This means that they are
signals which are active when they’re logically 0.
In other words, if you put a logic probe on the
RES pin of the 6301 processor it would show +5
volts (logic 1) all the time except when a reset
interrupt occurred. But programmers, as
opposed to design engineers, don’t need to
worry about this, so we’ve dispensed with the
bar in our discussions.

Explanation of the table

Priority — If more than one interrupt occurs at
one time, then the one with the highest
priority is handled first.

Vector — The processor will look at the contents
of this location and jump to whatever address
is specified there.

Type of interrupt — In addition to the NMI,
RES, and IRQ interrupts previously men-
tioned, there are several others.

Trap — Occurs when the 6301 tries to execute
an invalid op code.

SWI — This is a pseudo-interrupt that can be
used by the programmer. The SWI (3F)
instruction in a machine language program
will cause this processing to begin.

SCI — Generated by an event occurring on
the high-speed serial path between the two
6301s.

ICF, OCF, TOF timer signals — Not to be
confused with real-time clock interrupts,
their explanation is highly technical and
best left to the manufacturer.

Jump 1— This is the contents of the vector
address. You can verify this by using the HX-
20 Monitor. The factory sets this address in
the 6301 on board ROM and it is jumped to
when at interrupt occurs.

Jump 2 — After the processor jumps to the
address that had been specified in high ROM,
what we called Jump 1, it tries to execute
what it finds there. What it will find there is a
jump instruction, that is a 7E followed by a 2-
byte address. In the table above, we called
this 2-byte address Jump 2 and we can note
that it is the address of a subroutine in the
HX-20's operating system. RESET is an excep-
tion; the first instruction at $E000 is an SEI (OF)
to prevent any other interrupts from taking
place.

What does all this jumping around mean?
We've gone from on board ROM to RAM and
then to the operating system in ROM. The

reason this is done is to give the programmer
the capability of handling the interrupts in his
own fashion. Note that if we were to put a
different address in Jump 1, then the processor
would execute our subroutine rather than the
one in the operating system.

More usefully, we could ‘front-end” an inter-
rupt. That is, we could have our code executed
and then as the last instruction in our sub-
routine, we could have a jump to the operating
system’s normal interrupt processing routine.

For instance, we could intercept TRAP inter-
rupts by putting an address in $106. When we
finished processing, we could issue an RTI (3B)
instruction or a JMP (7EDFFA) to' the normal
Trap routine.

Note, also, that the operating system does not
do anything on either NMI or SWI interrupts. It
simply doesn’t expect to see any. Were it to see
any, the processor would try executing the
instruction at $11B or $10B. Only there is no
instruction there, only zeros, and so a trap
interrupt would occur. But, of course, we could
put the address of our own routine there.

Figure 5.9 shows interrupt processing. Note
the stack activity. Certain operations, including
hardware interrupts plus the software interrupt
(SWI) and the wait for interrupt (WAI) instruc-
tions, cause stack activity — they automatically
save the system’s registers on the stack.

Say the stack pointer has $FF and the
program counter contains $0A60, which is the
address of an SWI instruction. $0A goes into
location $00FF (where the stack pointer is
pointing), $61 goes into location $00FE. (What is
saved is the program counter + 1, so that when
control returns to the program, it'll pick up at
the next instruction.) The index register, which
we’ll say contains $1234, has the most significant
byte ($12) saved at $00FC and the least signifi-
cant byte ($34) saved at $00FD. Then accumu-
lator A (contents: $22) is saved at $00FB.
Accumulator B follows (contents: $33), being
saved at $FA. The last thing to be pushed onto
the stack is the condition code register, it goes in
at $00F9. The stack pointer now points to the
next available slot — location $F8. When a RTI
(return from interrupt) instruction is issued, all
of this data will be pulled off the stack and
loaded into the appropriate registers.

THE REAL-TIME CLOCK

The HX-20 contains a time-of-day clock with an

98

<Cycle>
#1~2
#3~9
#10
#11
#12
#13

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

N

Set IRQF

IRQ
Ignored

Set NMIF

N

Vector Address
generation

{

(FFF8) Fetch
IM=1

NMIF
Reset ‘IRQF

:

(FFF9) Fetch

N
Pseudo-WAI
Instruction
generation
Pseudo-WAI
A Stack
Instruction
generation PC,I1X, A, B, CCR
Stack
PC,iX, A, B,CCR

Vector Address
generation

1

(FFFC) Fetch

M=1
NMIF

Reset (| agF

:

(FFFD) Fetch

JUMP
FFFC/D

JUMP
FFF8/9

Fig. 5.9 MPU interrupt flow chart.

Reprinted courtesy of Hitachi America

<Cycle>

#1~2

#3~9

#10

#11

#12

#13

THE 6301 MICROPROCESSOR 99

Before an SW1 F8 00
F9 00
FA 00
FB 00
FC 00
FD 00
FE 00
FF 00
100 55
SP PC
00FF] [0A60 }—= SW1
X A B CCR
2 [3
After the SW1 F8 00
F9 00
FA 33
FB 22
FC 12
FD 34
FE 61
FF 0A
100 55

SP

PC

Fig. 5.10 Stack processing on interrupts

Table 5.8 Clock modes
Reprinted courtesy of Hitachi America

alarm and a 100-year calendar. Some of the
clock’s functions are available through BASIC,
some aren’t. Using BASIC, the programmer can
put a time-date stamp on any event that occurs
while his program is in control. This capability
has been used in a number of commercial
programs that we’ve seen. But there is more to
the clock than that and we hope that future
programmers will find other uses for it.

The clock is a CMOS chip, specifically the
HD146818 from Hitachi. The following has been
largely drawn from Hitachi America’s Micro-
computer Data Book.

Some of the clock’s features are:

- time-of-day and calendar

— counts seconds, minutes, and hours of the day

- counts days of the week, date, month, and
year

- binary or BCD representation of time, calen-
dar, and alarm; 12 or 24 hour clock with AM
and PM in 12 hour mode

— automatic end of month recognition

— automatic leap year recognition

— interfaced as 64 RAM locations to be accessible
to software
— 14 bytes of clock and control registers
- 50 bytes of general purpose RAM

— three interrupts are separately software mask-
able and testable

R -
Address Function Decimal ange Bina Example BCD
Locati R i inary
ocation ange Binary Data Mode BCD Data Mode Data Mode Data Mode
0 Seconds 0~59 $00~$38 $00~ $59 15 21
1 Seconds Alarm 0~59 $00~$38 $00 ~ $59 15 21
2 Minutes 0~59 $00~$38 $00 ~ $59 3A 58
3 Minutes Alarm 0~59 $00~$38 $00 ~$59 3A 58
Hours 1~12 $01~$0C (AM) and | $01~$12 (AM) and 05 05
4 (12 Hour Mode) $81~$8C (PM) $81~$92 (PM)
Hours ~ ~ ~
(24 Hour Mode) 0~23 $00~$17 $00~$23 05 05
Hours Alarm 1~12 $01~$0C (AM) and | $01~$12 (AM) and 05 05
5 (12 Hour Mode) $81~$8C (PM) $81~$92 (PM)
Hours Alarm ~ ~ ~
(24 Hour Mode) 0~23 $00~$17 $00~$23 05 05
‘Day of the Week - - -
6 Sunday = 1 1~7 $01 ~$07 $01~$07 05 05
7 " Day of the Month 1~31 $01~$1F $01~$31 OF 15
8 Month 1~12 $01~$0C $01~$12 02 02
9 Year 0~99 $00~$63 $00~$99 4F 79

* Example: 5:58:21 Thursday 16th February 1979

100 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

- time-of-day alarm, once-per-second to once-
per-day

— periodic rates from 30.5 microseconds to 500
milliseconds

- end-of-clock update cycle

Ten RAM locations are used for time, calen-
dar, and alarm. Another four are for control
registers. In the HX-20, this RAM starts at
location $40. (Remember to set $7E to $80 if you
want to look at this area with the Monitor.)

Table 5.8 shows the contents of the first 10 bytes,
starting at memory location $40. Shown in Table
5.9 are the four control registers: (b7 is the high-
order, $80 bit, b0 is the low-order, $01 bit).

Explanation of the clock control registers

UIP — The update in progress flag is a status
flag that may be monitored by the program.
When UIP is a ‘1’ the update cycle is in
progress or will soon begin. When UIP is a ‘0
the update cycle is not in progress and will
not start for at least 244 microseconds. The
time, calendar, and alarm information in
RAM is fully available to the program when
the UIP bit is zero, that is, when the
information is not in transition.

The update cycle is normally done once per
second. Its primary function is to increment
the seconds byte, check for overflow, incre-
ment the minutes byte when appropriate, and
so forth through to the year byte. The update
cycle also compares each alarm byte with the
corresponding time byte and issues an alarm
if a match or if a ‘don’t care’ code (11xx xxxx)
is present in all three positions. During the
update cycle, the time, calendar, and alarm
bytes are not accessible by the program.

DV2, DV1, DV0 — The divider bits set the
time base.
000 is a 4.19 MHz clock

Table 5.9
Clock control registers

001 is a 1.05 MHz clock
010 is a 32.7 kHz clock

RS3, RS2, RS1, RSO — These four bits select a
rate at which a periodic interrupt can be
generated. Some permissible values are:

Register A Interrupt period
x00x 0000 none

x00x 0001 30.5 us

x00x 0010 61.0 us

x00x 0011 122.1 us

x00x 1000 3.9 ms

x00x 1111 500 ms

Each step increase in register A doubles the
length of the interrupt period.

SET — When the SET bit is a ‘0", the update
cycle functions normally by advancing the
counts once-per-second. When the SET bit is
a ‘l’, then any update cycle in progress is
aborted and the program may initialize the
time and calendar bytes without an update
occurring in the midst of intializing.

PIE — The periodic interrupt enable bit is a
read/write bit which causes periodic inter-
rupts to be effective. Putting a ‘1’ in PIE sets
the interrupts at the rate specified by the RS3,
RS2, RS1, and RSO bits in register A. A ‘0’
means that the periods are still being ticked
off, but no interrupts will take place.

AIE — The alarm interrupt enable bit is a
read/write bit which causes alarm interrupts
to be effective. A ‘1’ in AIE will produce an
alarm interrupt for each second that the three
time bytes equal the three alarm bytes. A ‘0’
means no interrupts will occur.

UIE — The update-ended interrupt enable bit
will set this interrupt active on a ‘1", not active
ona ‘0.

DM — The data mode bit indicates whether

MSB

LSB Memory
Location

b7 b6 b5 b4
Register A UIP Dv2 DV1 DVo
Register B SET PIE AIE UIE
Register C IRQF PF AF UF
Register D VRT 0 0 0

b2 b1 b0
RS2 RSt RSO 4A

SQWE DM 24/12 DSE 4B

0 0 0 4C
0 0 0 4D

THE 6301 MICROPROCESSOR 101

time and calendar updates are to use binary
or BCD formats. A ‘1’ means binary, ‘0
means BCD.

24/12 — A ‘1’ means use the 24 hour clock, a
‘0’ means use the 12 hour clock.

DSE — A ‘1" means that the clock should
switch to daylight saving time on the last
Sunday in April and be switched back again
on the last Sunday in October. A ‘0" means no
daylight saving time.

IRQF — If ‘1’, then at interrupt has occurred.
That is, PF and PIE were each equal to 1 OR
AF and AIE were each equal to 1 OR UF and
UIE were each equal to 1.

PF — The periodic interrupt flag is a read-
only bit that will go to 1 when a periodic
interrupt is capable of taking place. (Whether
one will or not depends on how PIE is set.)

AF — The alarm interrupt flag will be ‘1’
when the current time matches the alarm
time. If AIE is also a ‘1’, then an interrupt will
take place.

UF — The update-ended interrupt flag is set

after each update cycle. If UIE is also a ‘1,
then an interrupt will occur.

As can be seen from the above, there are
three distinct sources of interrupts that can be
handed to the 6301. The alarm interrupt may be
programmed to occur at rates from once per
second to one a day. The periodic interrupt may
be selected for rates from half-a-second to 30.517
microseconds. The update-ended interrupt may
be used to indicate to the program that an
update cycle has been completed.

The processor program selects which inter-
rupts, if any, it wishes to receive by setting the
bits in register B. If more than one type of
interrupt can occur, the program can check the
contents of register C to see which has occurred.
If the programmer decides not to have the
program interrupt-driven, then he can still tell
whether an interrupt would have occurred by
checking the contents of register C. Every time
register C is read, the contents are set back to 0.
Also location $7D, bit $08, is set by the operating
system when a clock alarm has occurred.

Further information on the clock is available
from Hitachi America and from Epson.

6

ASSEMBLY LANGUAGE

This chapter covers:

‘Profanity is the one language understood by all
programmers.’

Why use machine/assembly language?

An assembler
Other assemblers

Storing machine code into memory
Using the Monitor as a learning tool
Assembly language coding hints, sample program

WHAT IS ASSEMBLY LANGUAGE
AND WHY USE IT?

Using the language of the machine — the hex,
really binary, digits that the processor under-
stands — opens up more of the computer’s
power to us. Coding directly in machine
language as opposed to BASIC gives us more
speed and more functions. You'll probably find
that it is most practical to use BASIC for most of
a program, and those parts of the program that
would be too difficult to write in BASIC or are
time-sensitive can be done in machine language.

Assembly language may seem forbidding if
you haven’t been exposed to it before. It's not
like BASIC at all. In fact, you should forget
everything you know that’s specific to BASIC
before trying to learn assembly language. Just
remember your fundamental programming tech-
niques that are applicable to any language: what
a branch is, what a loop is, etc. Read the
previous chapter on machine architecture and go
on from there.

But assembly language isn’t hard, just differ-
ent. People who learned assembly language as
their first language — as this writer did (RPG
doesn’t count) — find it comfortable to use and
easy to debug.

When you looked at the previous chapter,
you noticed that the HX-20 has a lot of different
machine instructions. But you really don’t need
to know very many of them to write an

102

assembly language program. It's been estimated,
for instance, that 70% of a typical assembly
language program consists of only three groups
of instructions: load registers, store into
memory, and branch. Add a couple of other
instructions — add 1 to a register, subtract 1
from a register — and you're practically all set.

Coding directly in machine language can
become difficult when actual memory locations
are used. Any time the program is changed, for
instance, those locations may change. So assem-
blers were developed. With an assembler, you
write a program using a special set of reserved
words, in a specified format, and the output is
converted into machine language. You can write
your program in assembly language first and then
use a number of methods, POKE for instance,
to get the resulting machine code into memory.

The following is a typical assembly language
program and one that you may want to use.
What it does is allow you to call any machine
language routine from BASIC, including the
routines in the HX-20's ROM. Basically, what
the program does is look in certain locations for
data that has been saved there by a BASIC
program, take that data and load it into the
registers, and then call the routine whose
address has also been stored in memory by the
BASIC program. After the return from the called
routine, this program will store the contents of
the registers back into the same locations that
were set on entry.

ASSEMBLY LANGUAGE 103

0 000 ORG $0AEQ
1 AEO FEOAFB LDX RTRN
2 AE3 3C PSHX

3 AE4 FEOBO1 LDX ROM
4 AE7 3C PSHX

5 AE8 FEOAFD LDX REGX
6 AEB B60AFF LDAA REGA
7 AEE F60B00 LDAB REGB
8 AF1 39 RTS

9 AF2 FFOAFD STX REGX
10 AF5 B70AFF STAA REGA
11 AF8 F70B00 STAB REGB
12 AFB 01 RTRN NOP

13 AFC 39 RTS

14 AFD 0000 REGX $0000

15 AFF 00 REGA $00

16 B0O 00 REGB $00

17 BO1 0000 ROM $0000

To call this from BASIC, you could do:

MEMSET &HB02 ‘Provide room for the
program

"Load the A accumulator
‘Load the B accumulator
"First byte of a ROM routine
address

‘Second byte of a ROM
routine address

‘Call the routine

'Check for a returned value

POKE &HAFF,&H30
POKE &HBO00,&H46
POKE &HBO01,&HFF

POKE &HBO02,&H2B

EXEC &HAEQ
PRINT PEEK (&HAFF)

If the index register needs to be loaded, then:
If the index register needs to be loaded, then:

POKE &HAFD, first byte
POKE &HAFE, second byte

The listing above was transcribed from the
output of the assembler which appears later in
this chapter. We want you to note several
things:

- Each assembler instruction takes up one line.

— Each assembler instruction corresponds to one
machine operation, except for special instruc-
tions like ORG that tell the assembler what to
do.

— The listing shows the locations in memory into
which the program is to be stored: AE0-BO1.
— The listing shows the machine code into which

the instruction is assembled.

All assemblers follow those conventions.
Different assemblers may assign different
names, called mnemonics, to the machine’s
instruction codes and may require that the
operands be entered differently but they all
adhere to the above conventions. More sophisti-
cated assemblers, called macro assemblers, allow
you to call several assembly language instruc-

tions with one macro instruction. But there is
still one assembly language instruction to one
machine instruction.

Another thing common to all assemblers are
labels. (If you want to branch somewhere, you
need to know where to branch.) Our assembler
uses 4-character labels. Other assemblers may
allow longer labels.

You may find it possible to learn assembly
language just from this book. If it still seems too
confusing, try one of the following books:

Basic Microprocessors and the 6800 — Bishop
(Hayden, 1979);

6800 Assembly Language
Leventhal (Osborne, 1978);
Using Microprocessors and Microcomputers: The
6800 Family — Greenfield and Wray (John
Wiley, 1981).

If you have trouble locating these books
locally or from the publishers, try the YES!
bookshop (address in Appendix B).

Programming —

AN ASSEMBLER

What follows is an assembler that you can use to
develop your own assembly/machine language
programs. It’s written in BASIC, it’s slow, and it
can’t hold large programs without the expansion
unit. But it’s considerably more useful than
trying to hand-assemble machine code. Other
alternatives are the assemblers available from
software publishers, mentioned later, and cross-
assemblers that run on other systems. (The idea
behind a cross-assembler is that you develop the
code on a system with good development tools
such as a good text editor, and then download
or otherwise transfer the machine code into the
target machine.)

This program was originally written by Robert
Labenski to run on a TRS-80 Model I, producing
cross-assembled code for a 6800 system. It was
originally published in the magazine Byte (Dec.
1981). We took that listing, added the 6301
instructions and made many further enhance-
ments. We are considering making this program
available on microcassette, so if interested,
contact us at the address in the Preface.

The assembler is easy to use. A list of
commands is displayed upon start-up and any
time an H (or Help) is typed after a Ready*
prompt. Use the SCRN key to review the part of
the list that scrolls off the screen.

The available commands are:

104 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

I(nsert) — insert a new line of source code
before a specified line. If no line is speci-
fied, insert after the last line of code in the
program.

D(elete) — remove a line of source code (or
multiple lines).

C(clear) — clear out any previous source
code.

L(ist) — display all source code or any single
line or any range of lines.

P(rint) — same as List, but send the output to
the printer.

A(ssemble) — assemble the source code that
has been entered.

S(ymbol) — display the symbol table created
after the assembly process.

M(emory) — store the created object into
memory using the assembled address loca-
tions.

E(xamples) — display examples of each type
of instruction.

The assembler is column oriented and de-
pends on the use of the TAB key to line up
labels in one column, operations in another,
operands in another.

10 ’ Mini 6301 Assembler
20 ’ Original code Copyright 1981 Robert Labenski.
30 ’ Enhancements Copyright 1983 Eric Balkan.
40 ’ Original 6800 version first published in
Byte 12/81
130 CLEAR 1000: DEFINT A-Z
135 WIDTH 46,16
137 SCROLL 9,0,8,4
140 DIM S$(160) ‘Source Data
150 DIM NO$(156) ‘Implied Operands
160 DIM OP$(41) 'Full Opcodes
170 DIM BR$(17) ‘Br inst
180 DIM OB$(160) 'Object
190 DIM AD(160) "Address
200 DIM LA$%(70) ‘Source Labels LC=Index
210 DIM LN(70) ‘Line # of Labels
220 DIM AR(80) 'Addr Resolution AC=Index
225 DIM EQ$(30) "Equates
230 GOSUB 1550:GOTO 1200
240 RESTORE ’Assemble
250 LC=0: AC=0: CD=0:EQ=0
260 IF OT THEN 340 ELSE OT=1:GOTO 310
270 CD=0:FOR X=1 TO LEN(A$):Y=ASC
(MID$(A$,X,1))
280 IF Y<=57 AND Y>=48 THEN Y=Y—-48
290 IF Y>64 THEN Y=Y-55
300 CD=16*CD+Y:NEXT:RETURN
305 'Build instr table
310 FOR A=0 TO 55:READ NOS$(A):NEXT
320 FOR A=0 TO 40:READ OP$(A):NEXT
330 FOR A=0 TO 16:READ BR$(A):NEXT
340 OK=1 'Main assembly loop

350 FOR A=0 TO N-1

360 IF LEFT$(S$(A),1)="*" THEN OB$(A)="":
AD(A)=CD:GOTO 450

370 IF MID$(S$(A),9,1)<>" " “ THEN 400

380 AD(A)=CD

390 OB$(A)=" “:FOR B=10 TO 40:A$=MID$(S$(A),
B,1):IF A$=""“ THEN 450 ELSE Y=ASC(A$):
X=0:A%$="":GOSUB 950:0B$(A)=0OB$(A)+A$:
CD=CD+1:NEXT

400 A$=MID$(S$(A),9,4):IF LEN(A$)=3 THEN
A$=A$+u “

410 IF A$="ORG"” THEN A$=MID$(S$(A),18,4):
OB$(A)=" “:GOSUB270:GOTO 450

420 IF LEFT$(S$(A),4)<>“ “ THEN LA$(LC)=LEFT$
(5$(A),4):LN(LC)=A:LC=LC+1

425 IF A$="EQU “ AND MID$(5$(A),17,1)="$"
THEN A$=MID$(S$(A),18,4):0B$(A)=" "
EQ$(EQ)=LEFT$(S$(A),4)+A$+“$":
EQ=EQ+1:GOTO450 ELSE IF A$="EQU “
THEN A$=MID$(S$(A),17,4):0B$(A)="
EQ$(EQ)=LEFT$(S$(A),4)+A$:EQ=EQ+1:
GOTO 450

429 IF LEFT$(A$,3)="BIT” THEN 440

430 IF LEFT$(A$,1)="B” THENGOSUB 710:GOTO
450

440 IF LEN(S$(A))<17 THENGOSUB 530 ELSE
GOSUB 600

450 NEXT A

460 IF SW=0 THEN 520

470 FOR A=0TO AC-1

475 FOR B=0TO EQ-1.IF RIGHT$(OB$(AR(A)),4)<>
LEFT$(EQ$(B),4) THEN NEXT ELSE
OB$(AR(A)=LEFT$(OB$(AR(A)),
LEN(OB$(AR(A)))—4 + MIDS$(EQ$(B),5,4):IF
RIGHT$(EQ$(B),1)="$" THEN 510

480 FOR B=0 TO LC-1:IF RIGHT $(OB$(AR(A)),
4)<>LA$(B) THEN NEXT ELSE 490

485 OB$(AR(A))="?Labl”:GOTO510

490 IF MID$(S$(AR(A)),9,1)="B” THEN X=
AD(AR(A)):Y=AD(LN(B)):AD(100)=Y—(X+2):
C=100: GOSUB 940: OB$(AR(A))=
LEFT$(OB$(AR(A)),2) + RIGHT$(A$,2):GOTO
510

500 C=LN(B):GOSUB 940:OB$(AR(A))=LEFT$(OB$%
(AR(A)),2)+“0"+A$

510 NEXT A

520 RETURN

530 ' Implied Operands

540 IF MID$(S$(A),9,1)="$" THEN OB$(A)=RIGHT
$(S$(A),LEN(S$(A))—9:AD(A)=CD:CD=CD+
LEN(S$(A))-9)/2:RETURN

550 FOR B=0 TO 55

560 IF LEFT$(NO$(B),4)<A$ THEN NEXT

565 IF LEFT$(NO$(B),4)>A% THEN OB$(A)=
“?2INST”: RETURN

570 OB$(A)=RIGHT$(NO$(B),2):AD(A)=CD:CD=
CD+1:RETURN

580 NEXT

585 OB$(A)="?Inst”:RETURN

600 * Other OPs

ASSEMBLY LANGUAGE 105

610 AD(A)=CD

620 FOR B=0 to 40

625 IF LEFT$(OP$(B),4)<A$ THEN NEXT

630 IF LEFT$(OP$(B),4)>A$ THEN OB$(A)="?Inst":
RETURN

645 IF MID$(OP$(B),2,2)="IM“ THEN GOSUB 1800
RETURN

650 IF MID$(S$(A),20,2) = “,X“ THEN OB$(A) =
MID$(OP$(B),10,2) + MID$(S$(A), 18,2):CD=
CD+2:RETURN

660 IF MID$(S$(A),17,1) = “#“ THEN OB$(A) =
MID$(OP$(B),6,2):0B$(A) = OB$(A)
+MID$(S$(A),19,2): CD=CD+2: B$=LEFT$
(OB$(A),2): IF B$<>“8C” AND B$<>“CE” AND
B$<> “8E” THEN RETURN ELSE CD=CD+1:
OB$(A)=0OB$(A)+RIGHT$(S$(A),2):RETURN

670 IF MID$(S$(A),17,1)=" “ THEN OB$(A)=
“27272“:RETURN

680 IF MID$(S$(A),17,1)="$" THEN A$=
MID$(S$(A),18,4) ELSE A$=MID$(S$(A),17,4):
AR(AC)=A: AC=AC+1: SW=1:A$=
A$+STRING$(4—(LEN(AS$)),” “)

690 IF LEN(A$)=4 THEN OB$(A)=MID$(OP$(B),12,
2):0B$(A)=0OB$(A)+A$:CD=CD+3:RETURN

700 OB$(A)=MID$(OP$(B),8,2):0B$(A)=0BS$(A)
+A$:CD=CD+2:RETURN

710

720 FOR B=0 TO 16

722 IF LEFT$(BR$(B),2)<MID$(A$,2,2) THEN NEXT

725 IF MID$(A$,2,2)<LEFT$(BR$(B),2) THEN
OB$(A)="??BR “:RETURN

740 OB$(A)=RIGHT$(BR$(B),2):AD(A)=CD:CD=
CD+2:AR(AC)=A:AC=AC+1

750 A$=MID$(S$(A),17,4):0B$(A)=OB$(A)+A$+
STRING$(4-LEN(A$),“ “):SW=1:RETURN

760 OK=0:LC=0:AC=0

770 IF LEN(A$>1 THEN 810

775 IF N<0 THEN N=0

780 LINE INPUT S$(N)

790 IF S$(N)=" “ THEN RETURN

800 N=N+1:GOTO 780

810 A=VAL (RIGHT$(A$,LEN(A$)-1)): IF ASN
THEN 780

820 LINEINPUT A$

830 IF A$=" “ THEN RETURN

840 FOR B=N+1 TO A STEP —L:IF B=0 THEN 850
ELSE S$(B)=S$(B—1):NEXT

850 S$(A)=A$:A=A+1:N=N+1:GOTO 820

860 IF LEN(A$)=1 THEN A=0:B=N-1:GOTTO 900

880 A=VAL(RIGHT$(A$,LEN(A$)—1)):B=A

890 IF MID$(A$,3,1)="—“ THEN B=VAL
(MID$(A$,4,2))

895 IF MID$(A$,4,1)="—* THEN B=VAL (MID$
(A$,5,2))

900 IF B>N THEN B=N-1

910 IF A>N-THEN A=N-1

915 IF A<0 THEN A=0

920 IF OK THEN FOR C=A TO B: GOSUB 940:
PRINT C;TAB(4)A$;“ “;0B$(C);TAB(18)S$(C)
ELSE GOTO 930

926 IF B$=“P” THEN LPRINT C;TAB(4)A%;” “;
OB$(C);TAB(18)S$(C)
927 NEXT:RETURN
930 FOR C=A TO B:PRINT C;“
THEN LPRINT C;“ “;S$(C)
935 NEXT:RETURN
940 A$=" “:Y=AD(C):X=INT(Y/256):GOSUB 970
950 X=INT((Y-(X*256))/16):GOSUB 970
960 X=INT(Y-(INT(Y/16)*16))
970 IF X>9 AND X<16 THEN A$=A$+CHRS$(X+55)
ELSE A$=A%$+RIGHT$(STR$(X),1)
980 RETURN
990 OK=0:LC=0:AC=0
1000 B=VAL(RIGHT$(A$,LEN(A$)-1))
1010 IF B>N THEN RETURN
1020 FOR C=B TO N-1:5$(C)=S$(C+1):NEXT
1030 N=N-1:RETURN
1040 ‘Symbol Print
1060 FOR A=0 TO LC—1:C=LN(A):GOSUB 940:
PRINT LA$(A);” “LN(A);” “;A$:
1070 NEXT:RETURN
1080 INPUT “L=Load S=Save “;B$
1100 IF(B$<>“S“)*(B$<>“L“) THEN RETURN
1110 INPUT “ File Specs “;A$
1120 IF B$="“S” THEN 1170
1130 OPEN “1“,1,A$:INPUT#1,0K,N
1140 ' FOR A=0 TO N—-1:INPUT #1,5$(A),OB$(A),
AD(A):NEXT
1145 FOR A=0 TO N-1.INPUT#1,ZZ$,S$(A),ZZ$,
Z73%,0B%$(A),ZZ$AD(A):NEXT
1150 CLOSE:RETURN
1160 PRINT “No Source”:RETURN
1170 IF N=0 THEN 1160 ELSE OPEN “O“,1,A$:
PRINT#1,0K;N;
1180 FOR A=0 TO N-1:PRINT#1,CHR$(34);5%(A);
CHR$(34);CHR$(34); OB$(A);CHR$(34);,AD(A);:

”;S$(C)ZIF B$=”P”

1190 B$=" “:CLOSE:RETURN

1200 LINEINPUT “Ready* “;A$:B$=LEFT$(A$,1)

1220 IF B$=“L“ OR B$=“P“ THEN GOSUB 860

1230 IF B$="1" THEN GOSUB 760

1240 IF B$="D“ THEN GOSUB 990

1250 IF B$="C” THEN INPUT “Sure (Y/N)*;Z$:IF Z$
=“Y" THEN 130

1260 IF B$="A” THEN GOSUB 240

1270 IF B$="F“ THEN GOSUB 1080

1280 IF B$="S” THEN GOSUB 1040

1290 IF B$="H" THEN GOSUB 1550

1293 IF B$="?“ THEN GOSUB 1550

1295 IF B$="E” THEN GOSUB 1610

1297 IF B$="M" THEN GOSUB 1900

1300 GOTO 1200

1301 ‘Implied Operands

1315 DATA ABA 1B,ABX 3A,ASLA 48,ASLB 58,
ASLD 05,ASRA 47,ASRB 57

1320 DATA CLC 0C,CLI 0E,CLRA 4F,CLRB 5F,CLV
0A,COMA 43,COMB 53

1322 DATA DAA 19,DECA 4A,DECB 5A,DES
34,DEX 09,INCA 4C,INCB 5C,INS 31,INX 08

1325 DATA LSRA 44,LSRB 54,LSRD 04, MUL

106 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

3D,NOP 01

1340 DATA PSHA 36,PSHB 37,PSHX 3C,PULA
32,PULB 33,PULX 38,ROLA, 49,ROLB 59,RORA
46,RORB 56,RTI 3B,RTS 39

1360 DATA SBA 10,SEC 0D,SEI OF,SEV 0B,SLP
1A,SWI 3F, TAB 16,TAP 06, TBA 17, TPA
07,TSTA 4D,TSTB 5D, TSX 30,TXS 35,WAI
3E,XGDX 18

1420 ’ Other Operands

1430 DATA ADDA 8B9BABBB,ADDB CBDBEBFB,
ADCA 8999A9B9, ADCB C9D9E9F9,ADDD
C3D3E3F3

1440 DATA AIM ??7161??, ANDA 8494A4B4,ANDB
C4D4E4F4, BITA 8595A5B5,BITB C5D5ESF5

1450 DATA CLR ????6F7F,CMPA 8191A1B1,CMPB
C1D1E1F1,CPX 8C9CACBC, DEC ????6A7A,EIM
??7565??, EORA 8898A8B8,EORB C8DSESF8,INC
2?226C7C

1455 DATA JMP ????6E7E,JSR ??9DADBD

1460 DATA LDAA 8696A6B6,LDAB C6D6E6F6,LDD
CCDCECFC,LDS 8E9EAEBE, LDX CEDEEEFE,
OIM 7?7262?2?, ORAA 8A9AAABA,ORAB
CADAEAFA

1470 DATA SBCA 8292A2B2,SBCB C2D2E2F2

1505 DATA STAA ??97A7B7,STAB ?2?D7E7F7,STD
?2?DDEDFD, STS ??9FAFBF, STX ??DFEFFF,
SUBA 8090A0B0,SUBB CODOEOF0,SUBD
8393A3B3, TIM ??7B6B??, TST ??2?6D7D

1530 ' Branch Instructions

1540 DATA CC24,CS25,EQ27,GE2C,GT2E, HI22,
LE2F,LS23,LT2D,M12B,NE26,PL2A,RA20,RN21,
SR80,V(C28,VS29

1550 ’ Operator’s Guide

1560 CLS:PRINT “H=Help (This Page)”

1562 PRINT “F=File (Save/Load)”

1570 PRINT “I=Insert”

1572 PRINT “Ixx=Insert before L#xx"

1580 PRINT “Dxx=Delete Line#xx"

1582 PRINT “C=Clear”

1590 PRINT “L=List all text”

1592 PRINT “Lxx=List Line#xx"”

1594 PRINT “Lxx-xx=List Range”

1596 PRINT “P=Print Text”

1600 PRINT “A=Assemble”

1605 PRINT “S=Symbol Display”

1606 PRINT “M=Put Obj in Memory“

1608 PRINT “E=Examples”

1609 RETURN

1610 PRINT “Instruction Examples”

1620 PRINT “Immed (ADDA #$1A)”

1630 PRINT “Direct (ADDA $1A)”

1640 PRINT “Indxd (ADDA $1A,X)”

1650 PRINT “Extnd (ADDA $0A40)“

1660 PRINT “Implied — No Operand”

1665 PRINT “Other (OIM $10,#$01)“

1666 PRINT “ (OIM $10,X, #$01)"”

1668 PRINT “LBL1 EQU LBL2”

1669 PRINT “LBL1 EQU $XXXX“

1670 PRINT “ORG $XXXX“

1672 PRINT “Literals $XX For Hex"

1674 PRINT “ ’XX’ For ASCII”

1680 PRINT “Source is Positional”

1682 PRINT “(Use Tabs)”

1690 PRINT “LABEL t OP t OPERAND”

1695 RETURN

1800 ’ 3-Operand Instructions

1810 IF MID$(S$(A),20,2)=",X“ THEN OB$(A)=
MID$(OP$(B),10,2) + MID$(S$(A),25,2)+MID$
(S%(A),18,2):CD=CD+3:GOTO 1830

1820 OB$(A)=MID$(OP$(B),8,2)+MID$(S$(A),23,2)
+ MID$(S$(A),18,2):CD=CD+3

1830 RETURN

1900 FOR C=0 TO N-1

1910 GOSUB 940

1920 IF OB$(C)=" “ THEN 1950

1925 FOR LL=0 TO LEN (OB$(C))/2-1

1927 GOSUB 2000

1930 POKE AD(C)+LL,B

1940 NEXT LL

1950 NEXT C

1960 RETURN

2000 CB$="0123456789ABCDEF”

2005 B=0

2030 FOR CX=1TO 16

2040 IF MID$(OB$(C),2+LL+1,1)=MID$(CB$,CX,1)
THEN B=(CX-1)*16:GOTO 2055

2050 NEXT CX

2055 FOR CX=1TO 16

2060 IF MID$(OB$(C),2*LL+2,1)=MID$(CB$,CX,1)
THEN B=(CX-1)+B:GOTO 2080

2070 NEXT CX

2080 RETURN

How the assembler program works

100-225 — Initialization: If the assembler is not
to be run on an HX-20, then comment out (i.e.,
put a quote in front of) lines 135 and 137. The
array sizes selected have been tested, but feel
free to change them to suit your needs.

230 — Print out the list of operator’'s commands
and ask for one to be selected. If you have hit
BREAK while running the program and don't
want to (or can’t) continue from where you
were, you can issue a GOTO 230 to restart
without losing any of your source code.

240-300 — Assemble the source code. If this is
the first assembly, go build the instruction table
first (310).

310-330 — Read the set of 6301 instructions
(DATA statements) into three arrays, one for
instructions with implied operands, one for non-
branch instructions with operands, and one for
branch instructions.

340-520 — Assemble the program. ORGs and
EQUs are handled separately from 6301 instruc-
tions. Possible error messages:

ASSEMBLY LANGUAGE 107

?Inst — the instruction op code is not valid
?Labl — the label is undefined
?Br — invalid branch instruction

540-585 — Subroutine to assemble instructions
with implied operands.
600-700 — Subroutine to assemble instructions
with operands.
710-750 — Subroutine to
instructions.
760-850 — Insert a line of source code.
860-980 — List program on screen or printer.
990-1030 — Delete a line of source code.
1040-1070 — Display the symbol table.
1080-1190 — Load or save the source program
to/from tape. If not running on the HX-20, line
1140 may need to be used instead of 1145.
1200-1300 — Ask for a command from the user
and execute the appropriate subroutine. Then
return to ask for another command.
1301-1540 — The lists of valid 6301 instruction
op codes.
1550-1609 — The list of permissible operator
commands.
1610-1695 — Some information on the format of
6301 instructions.
1800-1830 — This routine handles those 6301
instructions that have three operands.
1900-1960 — Places object code in memory.
2000-2080 — Compresses a printable (zoned)
hex character into its binary equivalent. That is,
the object code displayed by the mini-assembler
is not stored as hex numbers. For instance, an
LDX $01,X instruction assembles as A601, but
what we store in memory is: 41 36 30 31. (So it's
readable.) Called from line 1920, this subroutine
would take the 41 36 30 31 and store it into
memory as A6 01 so that it could be executed.
There have been a great number of magazine
articles written about the 6800 since its creation,
especially at the height of its popularity in
1977-78. You may find some of these useful.
Here are a few to look up:

assemble branch

Explained: String Interpretations. Parsing Tech-
niques for the 6800, by Gary Gaugler, Kilobaud
Microcomputing, 4/78. Well-written article on how
to parse (interpret) character strings, with
examples and diagrams.

6800 Trace and Disassemble Program, by
Richard Carickhoff, Kilobaud Microcomputing,
5/80. Uses some Mikbug I/O routines, so will not
run on the HX-20, but could give you some
ideas. No source code provided, just hex object
code.

GPM for the M6800, by Fritz van der Wateren,
Dr Dobb’s Journal, 11-12/77. A macro generator.
Assembly language source code provided.

M6800 Disassembler, by Gordon Stallings, Dr
Dobb’s Journal, 3/77. Written in assembler

language.
Address List Program, by C.H. Looney, Kilobaud
Microcomputing, 10/80. In 6800 machine
language.

Build a SISTER for your 6800, by Ray Boaz,
Kilobaud Microcomputing, 12/79. Hardware: single
stepper.

Condensed Reference Chart for the 6800, by
Robert J. Bormann, Byte,7/77. Information on
instruction groups; looking for ‘holes’ in the
instruction set.

Undocumented M6800 Instructions, by Gerry
Wheeler, Byte 12/77. Experiences testing some of
the holes mentioned above (but will be different
on the Hitachi).

The Motorola 6800 Instruction Set, by Paul M.
Jessop, Byte, 1/78. Another way to look at the
instruction set.

Hand Assembling M6800 Relative Addresses, by
Ray Boaz, Byte, 4/78. A handy table for calculat-
ing branch addresses.

Diagnostic and utility software, by Robert
Harwood, Personal Computing, 10/81. Two
memory tests for 6800-based machines, unfortu-
nately using operating system calls for I/O.
Would need some work to be able to use on the
HX-20.

How to program and interface the 6800, by
Dennis Doonan, Interface Age, 9/81.

Fast Fourier for the M6800 by Richard H. Lord,
Byte, 2/79. Assembly language program to
analyse music and speech. Correction of a bug
in the above by Alastair Roxburgh, Byte, 5/81,
p-458.

DEMONS: a symbolic debugging monitor (6800),
A.IL. Halsema, Byte, 5/81. Includes a source code
listing (6800) of a disassembler.

6801: a one-chip system, by H.W. Neff, Kilobaud
Microcomputing, 1/81. Describes the capabilities
of the 6801, with some background on the 68xx
family.

Write Your Own Assembler, by Dan Fylstra, Best of
Byte, Vol. 1. Explains what an assembler does,
how to write your own. Good diagrams.

108 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

OTHER ASSEMBLERS

As we noted earlier, our assembler is not the
greatest. You may want to spend a little money
and buy something better.

Epson America has an HX-20 assembler on
ROM that they’ve been making available to their
software developers. It may be available to the
public by the time you read this.

Warburton Franki has a BASIC program that
will assemble Hitachi mnemonics from micro-
cassette tape to object code and store it in the
machine language area. Mnemonics may be
input and edited under BASIC and saved to
tape. An assembly listing and symbol table is
available on the HX-20 screen, microprinter or
external printer. $20 on microcassette.

WEF also has a disassembler. This is a reverse
assembler — a program that will take object
code and convert it back into source code. It's
useful both in figuring out the functions of other
codes as well as helping in your own debugging.
The disassembler operates on machine code
within the HX-20’s address space with optional
output to either the microprinter or an external
printer. A memory dump in either ASCII or hex
format can also be obtained.

Kuma Computers markets a 6301 editor/
assembler developed by Appollo. It's £14 and
looks much like the Labenski assembler we’'ve
reprinted in the book. It's written in BASIC,
uses BASIC string space to hold the code, has
the same editing commands — insert, delete,
list. It's a little more sophisticated in its. error

handling, it accepts decimal and octal numbers"

as well as hex, it differentiates between 1 and 2
byte literals, it doesn’t require the use of tabs for
source code entry and it is probably faster. (The
latter is said, without personal experience,
because we can’t imagine anything slower than
ours.) It also takes a little less memory than
ours, which could be important when working
on larger programs. The savings in memory
probably come from the use of non-standard
addressing modes, which means that a little
more work is involved in converting programs
written for a more standard assembler.

Cross-assemblers

If you're really serious about assembly language
programming, if you intend to develop sophisti-
cated, complex programs, then you could use
more powerful development tools than those
we've discussed.

The physical limitations of the HX-20 preclude
running the kind of programs we're talking
about. You need ‘cross-software’. The assembler
and the other development tools are run on
another, larger computer with the resulting
object code downloaded into the HX-20.

One company with such a set is Microtec.
This company has a macro assembler ($1800), a
linking loader (another $300), and an interactive
simulator, including simulated /O ($1250).

Microtec’'s macro assembler allows nesting,
recursive calls, global and local symbols, and
conditional assemblies. Multiply, divide,
Boolean, relational operators, and parentheses
are allowed in expressions. A common section, a
unique feature for an assembler, allows separate
programs to share variables. Output is relocat-
able and the linking loader allows several object
modules to be joined together.

According to Microtec, the interactive simu-
lator simulates all aspects of the 6301 by
implementing, in software, the registers and
logic control functions of the 6301. The timer
and serial communications interface are also
simulated. A command language allows regis-
ters to be set, simulated memory to be dis-
played/altered, breakpoints to be set, trace
records to be displayed, interrupts to be initi-
ated, /O to be done for any port address, etc.
Symbolic debugging is also provided, using the
assembly language source code labels.

Microtec’s software is intended for mini-
computer and mainframe use. Any 16 (or more)
bit computer’ with Fortran IV can run the
package. In fact, CDC’s Cybernet time-sharing
system has it up and programmers can use it via
dial-up terminals. The assembler/loader manual
and the simulator manual are available separ-
ately for $15 each.

Warburton Franki, the Epson distributor for
Australia, markets a set of cross-software. The
6301 assembler, $150, runs on any CP/M disk
system with at least 32K of memory. It produces
a symbol cross-reference table, a list file, and an
object file which may be downloaded into the
HX-20.

A machine language program running on the
HX-20 reads the object file coming across the RS-
232 port and loads it into memory. This loader is
$20, takes just 256 bytes of memory, and can be
located anywhere within HX-20 RAM.

Epson America and Hitachi America also have
6301 cross-assemblers. Epson’s runs on CP/M
systems, Hitachi’s runs on the IBM 370 and the
Intel MDS.

ASSEMBLY LANGUAGE 109

A company with a cross-assembler for the
6801 is Avocet Systems Inc. This program runs
on any CP/M microcomputer. The company also
has an EPRON programmer so that you can
‘burn’ your object code into a PROM.

Companies with cross-assemblers for the 6800
are Transam Microsystems (£145) and Sorcim.

CompuServe, about which more is mentioned
in Chapter 8, Communications, offers a 6800
assembler on its time-sharing service. This
assembler can produce either a listing or object
code. Usual CompuServe rates apply.

STORING MACHINE CODE INTO MEMORY

After we've assembled our program and pro-
duced machine language code, we can store it
into the HX-20 in five ways:

- downloading over the RS-232 port from an-
other computer;

- POKEFE'ing it into memory from BASIC;

— using a combination of DATA/READ/VARPTR
statements from BASIC;

- using the Monitor;

- using an assembler.

As an example, if you wanted to store an
LDAA #8$10 at location 2640, you could do:

MEMSET 2645
POKE 2640, &H86
POKE 2641,&H10

If you wanted to execute, from BASIC, any
code that you stored there, you could do:

DEFUSRO=2640
X=USR0(0)

Remember to end all machine code programs
with an RTS ($39) if you want control to return
to BASIC. Don’t forget, also, to set aside space
for your program by using the MEMSET instruc-
tion. If you don’t, you may write over the
information that the BASIC interpreter needs,
such as the memory map used to keep track of
what is in the five program areas.

For long programs, this will take Iless
memory:

Ex:

MEMSET 2660
DEFUSRO=2641
DEFINT A

DIM A(20)

DATA &H86,&H10
FOR I=0TO 2

READ A(I):POKE 2641, A(])
NEXT I
X=USRO

Here’s another way:

DEFINT A

DIM A(Q2)

FOR X=1TO 2
DATA &H17,&H39
READ A1,A2
B=A1*256+A2

IF B>32767 THEN A(X)=B-65536 ELSE A(X)=B
NEXT X
U=VARPTR(A(1))
DEFUSR=U
X=USR(0)

Note No POKEs are used in this last
example. But an integer variable in BASIC takes
up 2 bytes; therefore we have to combine the 2
bytes to form 1 hex number. Also, BASIC will
store a number larger than 32,767 as its comple-
ment (i.e., negatively, so we have to fix that too.
This type of program must be relocatable, as you
can't have any instructions that use fixed
addresses. (A machine language program to
relocate any 6800 program can be found in the
3/78 issue of Interface Age, written by Neal
Chapman).

Further information on this topic (though
written for Z80 computers) can be found in 80-
US Magazine, 5/81 and 9/81.

Once you have the machine code in memory,
you can save it to tape via the SAVEM command
from BASIC or the WM command from the
Monitor. Use LOADM or RM to get it back in
again.

USING THE MONITOR

The Monitor provides an easy way to store
machine code into memory. The monitor is also
a good way to learn the machine and we're
going to give you some instructions for using
the monitor as a learning tool.

Note It's possible, using the monitor, to
get into difficulties. Setting the system stack
pointer to zero, for instance, is definitely out.
You may have to hit RESET (the little button on
the side of the machine) to continue processing.
If you really mess up memory, you may have to
reinitialize the machine (hitting CTRL/@ on the
main menu), so save any programs and data in
memory to tape before starting.

The monitor is entered directly off the menu

110

or with the MON command from BASIC. The
results are the same either way. The differences
are in the contents of the registers upon entry,
including the stack pointer, and a change in
some memory locations that the BASIC inter-
preter has set. If you hit the BREAK key, for
instance, you'll return to BASIC if you came
from BASIC.

The commands to use the Monitor are
explained starting on p.399 of Epson America’s
BASIC Reference Book. If you don’t have a copy
handy, here’s a quick review:

Generally, a period (.) and a RETURN will
terminate any action.

B = go back, same as hitting the BREAK key

K = sets up a power-up sequence of simulated
keystrokes.

Examples: K2 will automatically put you into
BASIC whenever you turn the machine on

D = display memory.

Example: DOA40 will display the 15 bytes of
memory starting at location $A40. Hit <RETURN>
for each succeeding screenful.

G = go to the specified address

Example: G0A40,A4E will go to a routine
starting at location $A40 and return when (if) the
program counter contains $A4E.

S = store memory

Example: S0A40 will cause the Monitor to
prompt for the byte to be entered in that
location.

X = examine/change registers

Example: X will bring up each register one at
a time. Type <RETURN> to look at the next;
value <RETURN> to change the contents. A is
the A accumulator, B the B accumulator, X the
index register, C the condition code register,
S the stack pointer, and P the program counter.

R = read an object file. This is similar to the
LOADM command in BASIC.

Example: RM,TEST.OBJ,R will read in a file
from microcassette called TEST.OBJ and start
running it. A filename suffix (like .OBJ) is
always required. The other device names are C
for cassette, R for PROM cartridge, 0-7 for the
disk. As with the W command, you must be
sure to set.the address parameters (with the A
command) beforehand.

V = verify an object file
W = write an object file. This is similar to the

USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

SAVEM command in BASIC.

A = set addresses for reading/writing files. T is
the top address, L the last address, O an offset
into memory producing a new load address, E
the entry point.

The monitor can be used to learn machine
language by allowing you to try out each
instruction without writing a program. First, go
into BASIC and set MEMSIZE equal to at least
2660. Then get into the monitor — from 1 off the
main menu or by typing MON from BASIC. If
you'd like your registers to look the same as
ours, hit MENU and 1 after each test.

While in the monitor, the cursor control keys
don’t work and you must use CTRL/H or DEL to
backspace. Typing in period (.) will also take
you back to the general command level.

More information can be found in the Epson
BASIC Reference Book starting on p.399.

Examples Clear the B accumulator:

5F CLRB

A=00 B=00 X=D310
C=CB S=04AF P=D23B
Type:

SA40 <return> 5F <return> . <return>
This puts the CLRB in location $A40.

Then type:
X <return> <return> FF <return> . <return>
You now have accumulator B loaded with FE

Now type:
GA40,A41 <return>

This executes the 1-byte instruction at location
A40 and stops the machine at location A41

The registers now read:
B=00 it got cleared
P=0A41 this is the next instruction to be executed.

The monitor doesn’t save the contents of the
condition code register, but if it did, it would be
aC4, D4, E4, or F4

1 7 always one

1 6 always one

x 5 (H) not affected

x 4 (I) not affected

0 3 (N) cleared

12(Z) set

0 1 (V) cleared

0 0 (C) cleared

The fact that the monitor doesn’t save the
contents of the CCR before returning to com-
mand level makes it less valuable as a debugging
tool. But you can check what happens to the

ASSEMBLY LANGUAGE 11

condition code register by adding an 07 —
Transfer Condition Code Register into accumu-
lator A — right after the CLRB, e.g., 5F 07. That
is, type:

SA41 <return> 07 <return> . <return>

Then put something back in B (like FF) and
then execute the two instructions with:
GA40,A42

Some instructions don’t lend themselves to
this kind of treatment, but many do. Here's a
few more to help you get started.

Increment B accumulator

5C INCB

A=00 B=00 X=D310
C=C8 S04AF P=D23B
Type:

SA40 <return> 5C <return> 07 <return> . <return>

This puts an INCB in location $A40 and a TPA in
$A41.

Then type:
GA40,A42 <return> to execute it.

The registers now read:
B=01 we added 1
A=C0 (or DO or EO or F0)
1 7 always one
1 6 always one
x 5 (H) not affected
x 4 (I) not affected
0 3 (N) cleared
0 2 (Z) cleared
0 1 (V)cleared
0 0 (O)not affected

How about subtracting 1 from the B accumu-
lator:

Decrement B accumulator

5A DECB

A=00 B=00 X=D310
C=C8 S=04AF P=D23B
Type:

SA40 <return> 5A <return> 07 <return> . <return>

This puts a DECB in location $A40 and a TPA in
$A41.

Then type:
GA40,A42 <return> to execute it.

The registers now read:
B=FF (we subtracted 1 from 00).
A=C8

1 7 always one

1 6 always one

x 5 (H) not affected

x 4 (I) not affected

3 (N) set; the register went minus
2 (Z) cleared

1 (V) cleared

0 (C) not affected

The above examples were instructions that
didn’t use any operands, i.e., implied mode
instructions. Now let’s try some instructions that
are a little more complex:

1
0
0
0

Load B accumulator with a ‘constant’ value of
hex 45 ($45).

C645 INCB #%45

A=00 B=00 X=D310

C=C8 S=04AF P=D23B

Type:
SA40 <return> C6 <return> 45 <return> 07
<return> . <return>

This puts an LDAB in location $A40, the
operand ($45) in $A41, and a TPA in $A42.

Then type:
GA40,A43 <return> to execute it.

The registers now read:
B=45 it got loaded
A=C0

1 7 always one

1 6 always one

x 5 (H) not affected
x 4 (I) not affected
0 3 (N) cleared

0 2 (Z) cleared

0 1 (V) cleared

0 0 (C) not affected

How about loading accumulator B with a
value in memory? Just arbitrarily, let's use
location $F000 which is in ROM and always has
a value of $BD.

F6F000 LDAB $F000 (extended mode addressing)
A=00 B=00 X=D310
C=C8 S=04AF P=D23B

Type:
SA40 <return> F6 <return> FQ <return> 00 <return>
07 <return> . <return>

This puts an LDAB in location $A40, the first
byte of the memory location in $A41, the second
byte of the location in $A42, and a TPA in $A43.

Then type:
GA40,A44 <return> to execute it.

The registers now read:
B=BD it got loaded

A=C8

1 7 always one

1 6 always one

x 5 (H) not affected

112 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

x 4 (I) not affected

0 3 (N) got set ($BD looks like a negative number to
the processor)

0 2 (Z) got cleared

0 1 (V) got cleared

0 0 (C) not affected

How about reversing the above action and
storing that $BD into a location in memory?
F6F000 LDAB $F000
F70A48 STAB $0A48

Type:

SA40 <return> F6 <return> F0 <return> 00
<return> F7 <return> 0A <return> 48 <return> 07
<return> . <return>

As before, this puts an LDAB in locations
$A40-$A42, then a STAB instruction in locations
$A43-$A45. The operand on the STAB, $0A48,
tells the machine where to store our $BD.

Then type:
GA40,A47 <return> to execute it.

Now do a DOA40 <return>

You'll see your two-instruction program in
memory, along with two $BD you stored in
location $0A48.

SOME CODING HINTS

The following is offered as general assembly
language programming tips, useful for any
machine.

1. Put NOP instructions into your program
frequently. This leaves space for ‘zapping’
memory with your changes, without having
to re-assemble. Even large changes can be
made with just 2 bytes worth of free space —
putting in an instruction to branch to a patch
area.

2. No instructions should have labels except
those that are being branched to. This shows
at a glance how a particular section of code
can be entered.

3. Use NOP instructions for branch labels. This
lets you insert source code at the beginning of
the routine, without having to retype the
labelled statement.

4. If you can, use a comment on each line of
code. If you use our assembler, you'll run out
of space, which is why we didn’t do it. Also,
without assembler, only instructions that
have operands can accept a separate com-
ment. (In most assemblers, anything separ-

ated by a space from the operands is taken as
a comment.)

Tables

Tables are often of use in programming. There
are several ways of organizing data into tables.
For instance,

$0000
$F621
$3829
$FFFF
or
'"HELLO ’
‘GOOD-BYE’
'END)
In this case, each table entry is of equal
length. This makes it easy for subroutines to
handle. Just use a loop to inspect each element
sequentially. The end of the table can be a
marker such as all FFs or blanks or anything else
that would not normally come up in the data.
Or, you can load the number of table elements
into a counter and execute your loop that many
times, decrementing the counter each time.
If each element in the table has a variable
length, e.g.,

"HELLO’

‘GOOD-BYE’

"END’

you have a problem in that you don’t know how
long each entry is. Here’s three ways to keep
track:

$05

"HELLO’

$08

‘GOOD-BYE’

$03

'END’

Each element is preceded by its length.

Or: turn on the high-order bit of the last byte
in each element. (This assumes you're working
with ASCII text data, rather than binary or
graphics data.)

Or:

"HELLO’

$00

'GOOD-BYFE’

$00

With this arrangement, your program would

examine each character of the table entry and
stop when it hit a zero.

ASSEMBLY LANGUAGE 113

SOME HANDY ASSEMBLY LANGUAGE
SUBROUTINES

The BIT instruction will allow you to test a bit to
see if it's on or off. Here’s how to:

Set a bit flag on, e.g., bit 0 in location $0A48
LDAA $0A48 put flag byte in register

ORAA $80 turn on the appropriate bit

STAA $0A48 save it back

(If either of the two bits under examination is on,
turn on the corresponding bit in the accu-
mulator.)

Reverse a flag, e.g., bit 0 in location $0A48
LDAA $0A48

EORA $80

STAA $0A48

(If the bit under examination is on, an Exclusive
OR will turn it off. If it’s off, an EOR will turn it
on. Other bits are unaffected.)

Set a bit flag off, e.g., bit 0 in location $0A48
LDAA $0A48

ANDA $7F

STAA $0A48

What we did here was to AND all the bits in the
flag byte except the one we wanted off. This
leaves all those other bits the way they were, but
turns the relevant one off. (An AND will turn on
the result bit if both the corresponding operand
bits are on.)

The same thing, in the more general case:
LDAA #$FF

SUBA #$%nn

ANDA $nnnn

STAA $nnnn

This just subtracts the wanted bit from $FF.

The 6301, unlike the 6800, has an 8-bit
multiply instruction. But there’s still no one
instruction to multiply the 16-bit value in the D
(A+B) accumulator by an 8-bit number. The
following routines will help.

Multiply a 16-bit number by 2
ASLD
BCS to a routine to handle overflows

Multiply a 16-bit number by 3

STD $nnnn save original value somewhere
ASLD multiply by 2

BCS overflow routine

ADDD $nnnn add value back in

BCS overflow routine

Multiply a 16-bit number by 4
ASLD

BCS
ASLD
BCS

Multiply a 16-bit number by 5
STD $nnnn

ASLD

BCS

ASLD

BCS

ADDD

BCS

Multiply a 16-bit number by 6
STD $nnnn

ASLD

BCS

ASLD

BCS

ADDD

BCS

ADDD

BCS

There are no division instructions, either. But to
divide by two, use an LSR instruction:

LSRA for 8-bit values in accumulator A
or LSRB for 8-bit values in accumulator B
or LSR $nnnn for an 8-bit value at memory location
$nnnn
or LSR $nn,X for an 8-bit value at memory location
$nn+X
or LSRD for a 16-bit value in accumulator D

To divide by 4, 8, etc., just keep repeating the
instruction.

A specific HX-20 coding tip

An HX-20 machine code program will not
automatically check for the BREAK key being hit
or the power switch being ‘thrown’ or even a
low battery condition occurring. If your program
is at a critical point, perhaps when it's doing
tape I/O, then you may not want the operator to
interrupt it by accident or confusion over what
to do next. Talbot Computers, in their Intext
program, took this approach. The operator is
forced to go back to the main menu to terminate
the program — turning power off won’t do it.
(Remember: the HX-20 has continuous battery
power. All the ‘power on/off’ switch really does
is cause an interrupt that results in the setting
of a flag in memory.)

If you want to know when battery power is
low or when other specific conditions occur,
you'll need to test for them.

To test for a battery low condition, do:

114 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

TIM $02,#%$10 look at bit 4 of I/0 port 1
BE $FF1IF do the warning message (no
return)

(Note that bits are numbered right to left, i.e.,
bit 7 is the high-order bit, bit 0 is the low-order
bit.)

To test for the power switch having been
turned to off:

TIM $28,#$40 look at bit 6 at location hex 28
BE $FFAC turn off the power (no return)

To test for the BREAK key being hit:

JSR $FF6A scan the keyboard

LDAA $14C get contents of byte $14C
ANDA #%$04 only look at bit 2

BE if pressed, go. . .

To test for the microprinter being turned on:
JSR $FF6A scan the keyboard

LDAA $14E get contents of byte $14E
ANDA #5$80 only look at bit 7
BE if on, go. . .

To test for the MENU key being hit:

JRS $FF6A scan the keyboard

LDAA $14C get contents of byte $14C
ANDA #$20 only look at bit 5

BE if pressed, go. . .

The reason we didn’t do a TIM in these last
three examples is that TIM has no extended
addressing mode. It can access the first ‘page” of
memory using direct mode, or it can access the
remainder of memory using indexed mode
(which we could have used by loading the index
register with $14C or $14E).

Additional programming tips may be found in
Chapter 4, Using and Writing BASIC Programs.

Table 6.1

A GENERAL MOVE PROGRAM

The following program will move a block of data
around in memory. The options are:

- move data in the virtual screen to anywhere
else in memory;

- move data from elsewhere in memory to the
virtual screen

The program is callable from BASIC. To call it:
DEFUSRO=&HA40
X$=USRO(A$)
where A$ is a character string of the form:
FnnnnLnnnnTnnnn
F is the ‘from’ field and can be V or R
T is the ‘to’ field and can be V or R
Vnnnn is an offset from the start of the virtual
screen
Lnnnn is the length of the data to move
Rnnnn is an address in memory

For instance, to take $80 bytes of data from
address $378 and put it onto the beginning of
the virtual screen, A$ would equal
‘R0378L080V0000’. (For simplicity, this program
expects all passed numbers to be in hex.)

0 000 * A0000L0000A0000

1 000 * A=Virtual Or

2 000 * Ram

3 000 * L=Length

4 000 * e.g. V0040L0020RB000O
5 000 * would move 20 (hex)
6 000 * bytes from the start

7 000 * of the virtual

8 000 * screen + $40 to

9 000 * address $B000

Keyboard matrix updated by the BASIC interpreter or by calling $FF6A)

Memory -

Location $80 $40 $20 $
$145 7 6 5 4
146 / - ,

147 G F E D
148 (o] N M L
149 w \" U T
14A «— —]
14B CAPS GRPH NUM

14C MENU

14D PapF PF5
14E PrON CTRL SHIFT

10

DEL

$08 $04 $02 $01

3 2 1 0

; : 9 8

(of B A @

K J | H

S R Q P

[Z Y X
TAB sp CR

PAUSE BRK SCR CLR

PF4 PF3 PF2 PF1

SW6-4 SW6-3 SW6-2 SW6-1

01
CE0270
B60ACF
F60ADO
E300
FDOACF

FRMV

FRMR

TOV

LOOP

ASSEMBLY LANGUAGE 115

$0A40
$01,X
$01,X
$02,X
$FF2B

#8$56
$00,X
TOV
LOOP

#$0270
W5

Wé
$00,X
W5

W3
END

W3
w1
$00,X

W1
W5
$00,X

70 AC7 08 INX

71 AC8 FFOAD3 STX W5
72 ACB 20E2 BRA LOOP
73 ACD 01 END NOP

74 ACE 39 RTS

75 ACF 00 W1 $00

76 ADO 00 W2 $00

77 AD1 00 W3 $00

78 AD2 00 W4 $00

79 AD3 00 W5 $00

80 AD4 00 Wé $00

This is about the largest program that can be
assembled with our mini-assembler in an unex-
panded 16K HX-20. Additional comments in the
program would have exceeded the space avail-
able, so we decided to put them here separately.

10 Assemble the program to begin at location
$A40. (Remember to set MEMSET before
loading/using the program.)

11-15 Get the first two digits that we’ve been
past and convert them from ASCII hex
into binary, storing the new value in the
byte we labelled W1.

16-19 Ditto for the second byte of the ‘from’
field.

20-23 Ditto for the first byte of the length field.

24-27 Ditto for the second byte of the length
field.

28-31 Ditto for the first byte of the ‘to’ field.

32-35 Ditto for the second byte of the ‘to” field.

36-39 If the first field starts with ‘V’, branch to
FRMYV, else branch to FRMR.

4045 Find the start of the virtual screen and
add the specified displacement. Store
back into W1-W2.

48-52 Figure out if we have to find the start of
the virtual screen for the ‘to’ field.

53-58 If so, compute the new address and store
back into W5-W6.

59 At this point, we have real memory
addresses in W1-W2 and W5-Wé.

60-61 Get the length bytes W3-W4. If they’re
zero, then we’re done.

62-63 Otherwise, subtract 1 from the length and
store back into W3-W4.

64-65 Get the next (or first) ‘from’ byte by
putting W1-W2 into the index register
and using that as an address to load
accumulator A.

6667 Increment this address and store it back
into W1-W2 for the next time.

68-69 Get the next (or first) ‘to’ byte and store
the contents of accumulator A into it.

70-71 Bump the index register and save it back
into W5-W6 for the next time.

116 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

72 Continue looping until all bytes have As an exercise, you may want to tighten up
been loaded/stored. the code and save assembler space by creating a
74 Return to the caller. loop to process the values passed from BASIC.

FORTH

“If you don’t have time to do it right, when will
you have time to do it over?”’

This chapter covers:
An introduction to Forth
HCCS Forth

Sometimes tools — computer and otherwise —
can be judged to be:

Easy to learn/easy to use.

This is the ideal state, but usually too simple.
Most people will get used to what the product
does and then wish it could do more. But
adding these additional features often makes the
product:

Easy to learn/hard to use.

This is what happens when too many functions
are added that are not well integrated into the
original design. On the other hand, if you
redesign the product from scratch with all
possible features in place, then you run the risk
of producing something that'’s:

Hard to learn/easy to use.
The product features are consistent, but there
are so many such features that the novice user is
overwhelmed. Still, if you plan to use the
product a lot, riding the learning curve would
often be a good investment of time. However, if
you never get the hang of it, then the product is
just:
Hard to learn/hard to use.
After you've spent some time with Forth, you’'ll
probably want to put it in one of the latter two
categories. Forth is not easy to learn, but it can
(we’ve been told) be very worth while to use.
Your reaction to it probably depends more on
your personality type than on anything else.
People with neat, orderly minds like to write
computer programs in Pascal. They view assem-
bler as painful, and BASIC as a disaster. They
won't like Forth. Forth is a hacker’s language.

117

Like BASIC (but even more so) it lets you do
what you want when you want it. In Forth,
there are many fewer rules than in Pascal, where
the syntax of the language practically prohibits
logic errors.

WHAT IS FORTH?

Forth is a language, as you may have gathered.
But in at least one sense, it's more than
that — it’s an operating environment. It has its
own built-in text editor and its own disk/tape
handler.

Forth started as a way of doing process
control. But since those early beginnings in the
1960s, it has found its way into all sorts of
applications on all sorts of computers: word
processing, data management, arcade games,
etc.

WHY FORTH?

Like BASIC, Forth is an interpreter that can
execute your source statements directly. This
speeds program development. But Forth is also
a compiler. Once a routine has been debugged,
it can be stored in executable form. This makes
run-time speed much faster than the equivalent
BASIC program.

According to Dr Phillip Good, a respected
software reviewer, Forth is a good language for
one or two programmers trying to get a job done
as quickly as possible. But it's not a good
language for team projects where several pro-

118 USING AND PROGRAMMING THE EPSON HX-20 PORTABLE COMPUTER

grammers have to be able to read each other’s
code. Forth is ‘ideal for real-time data acquisi-
tion’, according to Dr Good, because there is a
smooth transition between the language and
machine code. But, Dr Good notes, while Forth
programs are good for accessing the 1/0 ports
and timing parameters of an individual machine,
this makes them less portable, i.e., less trans-
ferable, to another machine.

FORTH ON THE HX-20

As we write this, there are two versions of Forth
available for the HX-20. One is from Talbot
Microsystems which has long been producing
well-regarded Forth systems for other (mostly
6800/6809) computers. Some of the new software
developed for the HX-20 has been written in
Talbot’s Forth.

The other Forth which is available is from
HCCS in England. HCCS has been kind enough
to send us a copy of their Forth and the
remainder of this chapter is a discussion of that
system. Most implementations of Forth are
similar, adhering to the Forth Interest Group’s
Forth (fig-Forth). So, much of what we describe
about HCCS Forth will also apply to any other
Forth released for the HX-20.

LEARNING HCCS FORTH

HCCS Forth comes with a 100-page manual.
This manual assumes that you know nothing
about Forth, which was a valid assumption in
this writer’s case.

But we wouldn’t want to tell you that you can
learn Forth just from the manual. Especially this
manual, where the examples have not been
converted to the HX-20’s 20 column screen. The
book everyone seems to recommend for begin-
ners is Starting Forth, by Leo Brodie (Prentice-
Hall), 1981). This is not the best learning book in
the world — it's missing an index, for one
thing — but it is reasonably well done and easy
to read. Starting Forth explains a Forth (Forth, 79)
that is a little bit different from HCCS Forth (fig-
Forth), so you’ll need to keep both books in
front of you (as well as the machine) while
learning. Both books throw you right into Forth
arithmetic shortly after the beginning — and if
you don’t have a mathematical bent you'll just
have to suffer through it. Many BASIC books do

the same thing, though, even though most
people use their computers for other than
computations.

Being an interpreter, Forth is easier to learn
than compiled languages. You can just type in a
command and see what happens. In fact, both
books use a tutorial approach in just such a
manner. The HCCS Forth manual, for instance,
advises you to type in: 54 EMIT <CR> and then
watch what happens. (A ‘T’ is displayed; 54
being the decimal value for T and EMIT being
the statement that writes a single character to
the screen.)

If you're sharp, you've noticed in the above
example that the data preceded the operator,
unlike BASIC, i.e., PRINT CHR$(54). Forth has
often been called the language for those who
think backwards. Forth uses Reverse Polish
Notation, the same as some calculators. For
instance, two numbers added together would be
entered as: 3 5 + <return>. What is actually
happening here is that any numeric data you
enter goes onto a stack. So, in our example, the
3 would go onto the stack, then the 5. The
definition of ‘+’ is: a function that takes the top
two values off the stack, combines them and
puts the result back on the stack. That is, if you
did: 6 13 22 + +. What would happen is that the
number 41 would be displayed. (A ‘.” displays
the top value on the stack.)

We referred to definitions in the preceding
paragraph. Every word in Forth is a definition.
Some definitions are supplied, others are created
by the user. As Brodie points out, Forth works
in reverse compared to other languages. Instead
of having all possible operations pre-defined,
Forth provides a set of basic tools that let the
user build his own operational set.

The HCCS manual offers a number of
examples of this. Here’s one: ’

:KTEST BEGIN KEY DUP . 08 = UNTIL;

Executing this routine will cause any key the
user types to be displayed as its decimal ASCII
value. The routine is terminated when the DEL
key (an 08) is pressed. Note that the order of the
statements is not what you may be used to, but
it is simple to interpret given a description of
each keyword and the knowledge that interpre-
tation is done in a strictly left-to-right fashion.

Like many Forths, HCCS Forth uses a line
editor to enter source code. The HX-20's cursor
keys are not deactivated, they just don’t func-
tion correctly.

Other points of note about HCCS Forth:

FORTH

119

- message numbers are used instead of text, FIRST FLD FORGET
probably to save memory; FORTH HERE HEX
—it doesn’t like having BASIC in the same Il'g-D gOLD I DIATE
machine. We found that doing a cold start was . IMME
necessary to go back and forth between HCCS IIE\IATEST LHEJ AI EVIEP RET IEEZ
Forth and BASIC. LIMIT LIST LIT
LITERAL LOAD LOOP
M* M/ M/MOD
HCCS FORTH DEFINITIONS IvIINUMAXS hh;[fgSgAGE NNHNEXT
. ICSP # NFA NUMBER OFFSET
: '#s , OR ouT OVER
#> s , PAD PFA QUERY
(. (;CODE) QUIT R R#
+LOOP ABORT DO R> RO REPEAT
FIND LINE I..OOP ROT RP! S->D
by !
INUMBER N 7 SO SCR SIGN
™ BUE T Loop SMUDGE SP! SP@
+= GIN + M SPACE SPACES STATE
+ORI - _FIND SWAP TASK THEN
- ” " TIB TOGGLE TRAVERSE
—TRAILING TYPE U* U/
LINE bR | UNTIL USER VARIABLE
’ZMO 3 o< VOC-LINK VOCABULARY VLIST
WARNING WHILE WIDTH
0= OBRANCH 1+ WORD X XOR
: ‘ COMPILE
;CODE S < g@ [2! : }CLK)
S# SPUILDS > TRAM BEEP CASS
2COMP 2CSP ?ERROR lé%f,Y XFILE CONY
?EXEC ?LOADING ?PAIRS DATE YR MTH
?STACK ?TERM @ DAY DCHAR DRAW
ABORT ABS AGAIN FEED HOME LAST
ALLOT AND BACK
MASK MCASS MON
BASE BEGIN BL ?TERM MIC PICK
BLANKS BLK BRANCH CLS PGET PLOT
C1 C c@ PRINT PSET SEEK
CFA CMOVE COLD TAPCNT TIME@ TIME
COMPILE CONSTANT CONTEXT UDP WIND
COUNT CR CREATE
Csp D+ D+-
D. D.R DABS
DECIMAL DEFINITIONS DIGIT INSTALLATION
DO . . .
nggl;A L gll;'ﬂNUS DPL Installing HCCS Forth is a snap. . . literally. It
DROP DUP ELSE comes on a ROM which plugs into the optional
EMIT EMPTY-BUFFERS ENCLOSE ROM slot of the main unit (instead of Ski-
ERASE ERROR EXECUTE Writer, for instance). Alternatively, it may be
EXPECT FENCE FILL placed in the expansion unit.

8

COMMUNICATIONS

This chapter covers:

‘Magic is the inability to perceive the relationship
between cause and effect’ — Orr

The why of data communications

Overview
Electronic mail

Information retrieval and transactional services
The How of data communications

Modems
RS-232

Communicating from BASIC

A ‘smart’ communications program
Other communications programs
Trouble-shooting tips

WHY DATA COMMUNICATIONS

Probably anyone who has ever used a computer
has at some time or another wanted to transfer
data and programs from his computer or ter-
minal to another computer or terminal.

Most large organizations depend on it. Every
day, tens of thousands of people sit at terminals
sending and receiving information from large
computers. With the advent of microelectronics,
of course, computers no longer need to be large
and terminals no longer need to be ‘dumb’.
Microcomputers like the HX-20 can, with the
right software, now serve as terminals.

As a terminal, the HX-20 can access another
computer system and retrieve data or run
programs on that system. The benefits of this
are basically twofold:

- enabling company staff to do work outside
the office, away from the corporate computer;

- buying time from a commercial time-sharing
service so as to run programs that you could
not run in-house.

As an intelligent terminal, the HX-20 can
transfer data back an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>